

High-Speed Serial Pixel (HiSPi) Interface Protocol

High-Speed Serial Pixel (HiSPi)™ Interface Protocol

High-Speed

Serial Pixel (HiSPi™) Interface

Protocol Specification V1.50.00

Table of Contents

T	Introduction	
	1.1 Changes Relative to the Previous Version	. 5
	1.2 Terminology	. 5
	1.3 HiSPi Physical Interface	. 6
	1.4 Basic Protocol Syntax	
	1.4.1 Packetized-SP Mode Syntax	. 6
	1.4.2 Streaming Mode Syntax.	. 7
	1.4.3 ActiveStart-SP8 Mode Syntax	11
2	Syntax Element Descriptions	
	2.1 Protocol Words	
	2.2 Sync Codes (SO*/EO*)	12
	2.2.1 SP Modes	12
	2.2.2 Streaming-S Mode	13
	2.2.3 ActiveStart-SP8 Mode	14
	2.3 Filler Code (FLR)	16
	2.4 Active Image Line (AIL)	16
	2.5 Checksum (CRC)	18
	2.6 Idle Period (IDL)	19
3	Protocol Examples	20
4	Receiver Sync Code Detection	22
	4.1 Packetized- and Streaming-SP Modes	22
	4.2 Streaming-S Mode	23
	4.2.1 Four (or Eight) Active Data Lanes Per PHY	24
	4.2.2 Two Active Data Lanes Per PHY	25
	4.2.3 One Active Data Lane Per PHY	26
	4.3 ActiveStart-SP8 Mode.	26

List of Figures

Figure 1:	Packetized-SP Mode Image Frame Syntax (Yellow Indicates Optional Element)
Figure 2:	"Active-before-Blanking" (ABB) Frame Syntax
Figure 3:	"Blanking-Before-Active" (BBA) Frame Syntax
Figure 4:	Examples of Blanking-before-Active Frame Resolution Changes for Two Hypothetical
	Image Sensor Types
Figure 5:	ActiveStart-SP8 Mode Frame Syntax11
Figure 6:	Four-Lane Example of Packetized-SP Mode Frame Format (16 Pixels/Line)
Figure 7:	Four-Lane Example of Streaming-SP Mode Frame Format (16 Pixels/Line)
Figure 8:	Four-Lane Example of Streaming-S Mode Frame Format (16 Pixels/Line)
Figure 9:	Four-Lane Example of ActiveStart-SP8 Mode Frame Format (16 Pixels/Line)
Figure 10:	Sync Code Detection for Packetized- and Streaming-SP Modes
Figure 11:	Maximum-Length Sequences of Consecutive 0- and 1-Bits
Figure 12:	Four-Lane Streaming-S Sync Code Immediately Preceded by an Odd-Cycle IDL Word24
Figure 13:	Four-Lane Streaming-S Sync Code Immediately Preceded by an Even-Cycle IDL Word25
Figure 14:	Two-Lane Streaming-S Sync Code Immediately Preceded by an Odd-Cycle IDL Word25
Figure 15:	Two-Lane Streaming-S Sync Code Immediately Preceded by an Even-Cycle IDL Word
Figure 16:	Example Occurrence of False ActiveStart-SP8 Default SOL Sync Code for MT9E501
Figure 17:	Example of Overlapping ActiveStart-SP8 SOF and SOL Sync Codes

List of Tables

Table 1:	Basic Syntax Elements of HiSPi Protocol	6
Table 2:	Word 4 of Packetized- and Streaming-SP Sync Codes	12
Table 3:	Sync Code Transmission for Packetized- and Streaming-SP Modes ($N \ge 1, K \le 8$)	13
Table 4:	Word 4 of Streaming-S Sync Codes.	13
Table 5:	Streaming-S Sync Code Transmission Examples	14
Table 6:	ActiveStart-SP8 Sync Codes Examples	15
Table 7:	ActiveStart-SP8 Sync Code Transmission (N 3 1, K \leq 8)	15
Table 8:	Filler Code Word	16
Table 9:	Examples of AIL Word Stripping	17
Table 10:	Checksum Format	18
Table 11:	Checksum Transmission Example: Single 4-Lane PHY	18
Table 12:	Streaming-S IDL Words.	19
Table 13:	Streaming-S IDL Examples	19

1 Introduction

The HiSPi Protocol is primarily designed to support the high-speed transmission of image sensor data to an image processor over multiple, unidirectional, serial data Lanes. HiSPi Protocol v1.50.00 has four distinct operating Modes, which this document will refer to as Packetized-SP Mode, Streaming-SP Mode, Streaming-S Mode, and Active-Start-SP8 Mode. HiSPi Protocol Receivers may support any or all of these Modes, but all Receivers are strongly encouraged to support the Packetized-SP and/or Streaming-SP Modes. Users should check with Aptina regarding the Modes supported by any particular image sensor.

The Streaming-SP and Streaming-S Modes are very similar in that each provides explicit signaling for multiple blanking lines comprising the so-called vertical blanking interval of an image frame. Aptina's image sensors supporting the HiSPi Protocol will ensure that the lengths of these blanking lines conform to the total lengths of active image lines. Therefore, insofar as Aptina's image sensors are concerned, image data sequences complying with the Streaming-SP and Streaming-S Modes are guaranteed to be largely synchronous with respect to actual image frame timing.

The Packetized-SP and ActiveStart-SP8 Modes do not support explicit signaling of blanking lines. In particular, the Packetized-SP Mode essentially treats each active image line as a self-contained packet of information which may be transported in a manner asynchronous to actual image frame timing.

1.1 Changes Relative to the Previous Version

HiSPi Protocol Specification v1.50.00 is fully backwards-compatible with the previous specification v1.00.00 but also includes the following enhancements and clarifications:

- Support for 8-bit Words has been added (Section 2.1).
- Support for a single PHY having up to eight data lanes has been added (Sections 1.3 and 2.2).
- The definition of ActiveStart-SP8 Sync Codes has been expanded to clearly include both user-defined values as well as sensor-specific default values (Section 2.2.3).
- The definition of an Active Image Line has been expanded to include the optional splitting of pixel values across two or more Words as well as the packing of multiple pixels into a single Word (Section 2.4).

1.2 Terminology

<u>Required</u> refers to a feature which must be implemented in any HiSPi Protocol Transmitter or Receiver in reference to the Mode or context in question.

<u>Unsupported</u> refers to a feature which must not be implemented in any HiSPi Protocol Transmitter in reference to the Mode or context in question.

<u>Optional</u> refers to a feature which may be implemented in a HiSPi Protocol Transmitter. The feature's presence and enablement method will generally be datasheet dependent.

<u>Reserved (or Res)</u> refers to a bit pattern whose contents may change in a future version of the HiSPi Protocol and must be ignored by a HiSPi Protocol Receiver.

1.3 HiSPi Physical Interface

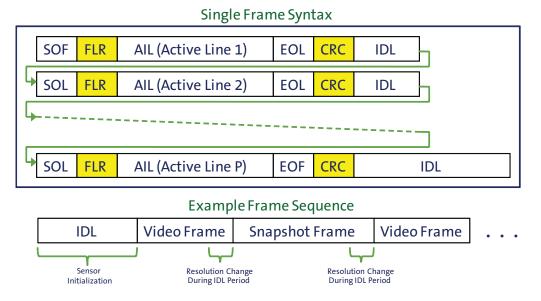
The HiSPi physical interface consists of N PHYs, where, for the purposes of this specificataion, each PHY is defined to have exactly one clock Lane and K active, serial data Lanes used for data transmission. Note that the number of active Lanes on a PHY may be less than the total number of Lanes actually available. N is theoretically unlimited, while K may range from 1 to 4, for N > 1, and from 1 to 8 for N = 1. Both N and K will vary depending on the selected image sensor and HiSPi operating Mode. For the Streaming-S Mode, K must not equal 3, 5, 6, or 7. HiSPi PHY electrical characteristics are described in the HiSPi Physical Layer Specification.

1.4 Basic Protocol Syntax

HiSPi transmits image sensor data as a sequence of one or more image frames. Each transmitted frame is composed of the basic protocol syntax elements listed in Table 1. Each Mode uses a subset of these elements, and the format of each element may also vary by Mode. Each syntax element consists of a collection of "Words" (see Section 2.1) beginning on Lane 1 of PHY 1 and ending on Lane K of PHY N.

Table 1: Basic Syntax Elements of HiSPi Protocol

Syntax Element	Packetized-SP	Streaming-SP	Streaming-S	ActiveStart-SP8
SOF Sync Code: Start of Active Frame	Required	Required	Unsupported	Required
SOL Sync Code: Start of Active Line	Required	Required	Required	Required
EOF Sync Code: End of Active Frame	Required	Unsupported	Unsupported	Unsupported
EOL Sync Code: End of Active Line	Required	Unsupported	Unsupported	Unsupported
SOV Sync Code: Start of Vertical Blanking Line	Unsupported	Required	Required	Unsupported
FLR: Filler code	Optional	Optional	Optional	Optional
AIL: Active Image Line	Required	Required	Required	Required
CRC: Checksum	Optional	Optional	Optional	Optional
IDL: Idle Period	Required	Required	Required	Required


1.4.1 Packetized-SP Mode Syntax

As shown in Figure 1, Packetized-SP Mode outputs an image frame as a series of P Active Image Lines (AILs), each of which is delimited by header and footer Sync Codes. Each AIL will normally have the same length, but this is not required by the protocol syntax.

If an AIL is the first image line of a frame, the header consists of an SOF Sync Code; otherwise, the header is an SOL Sync Code. The header Sync Code is then optionally followed by a Filler Code (FLR) which may be inserted to give the Receiver more time to process the header. If an AIL is the last image line, the footer following the AIL consists of an EOF Sync Code; otherwise, the footer is an EOL Sync Code. Each footer Sync Code is optionally followed by a Checksum (CRC).

- Figure 1:
- Packetized-SP Mode Image Frame Syntax (Yellow Indicates Optional Element)

An Idle Period (IDL) always follows the footer or CRC. The timing of the IDL may roughly coincide with an imager's horizontal or vertical blanking interval, but this is not required by the HiSPi protocol. The length of the IDL may vary from line-to-line or from frame-to-frame. As shown at the bottom of Figure 1, an IDL of undetermined length always precedes the initial frame of a frame sequence.

Note that a HiSPi Protocol Receiver capable of synchronizing to every header and footer Sync Code does not need to know in advance the length of an AIL or IDL. As will be discussed later, synchronization is made possible by the special formats of the header and footer Sync Codes and restrictions placed on the values within each AIL.

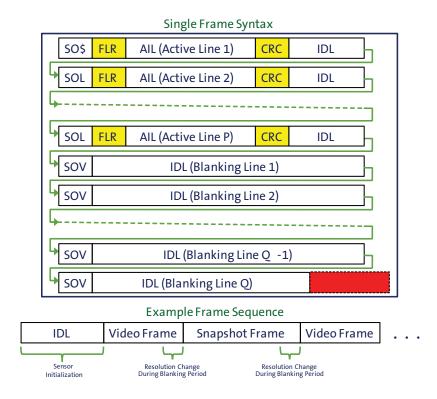
1.4.2 Streaming Mode Syntax

The Streaming-SP and Streaming-S Modes have the same high-level frame syntax with the exception of the Sync Code used to begin the first active line of each frame (i.e. SOF vs. SOL, respectively). Each of these Modes has two submodes called Active-before-Blanking (ABB) and Blanking-before-Active (BBA) which differ in terms of how vertical blanking intervals are output in relation to active image lines. Support of these submodes is image sensor dependent, but normally, any Aptina image sensor supporting the BBA submode will also support the ABB submode (however, the reverse is not true).

1.4.2.1 Active-before-Blanking Submode

As shown in Figure 2, the ABB submode initially outputs an image frame as a series of P Active Image Lines (AILs), each of which is preceded by a Sync Code. Each AIL normally has the same length. The first AIL of an image frame is preceded by either an SOF or SOL Sync Code, respectively, depending on whether Streaming-SP or Streaming-S Mode has been selected in the image sensor. All other AILs are preceded by an SOL Sync Code.

The Sync Code is then optionally followed by a Filler Code (FLR) which may be inserted to give the Receiver more time to process the Sync Code. Unlike the Packetized-SP Mode, there is no footer Sync Code, so each AIL may be immediately followed by an optional Checksum (CRC).



An Idle Period (IDL) always follows each optional CRC. The timing of this Idle Period usually overlaps with an image sensor's horizontal blanking interval, and as such, the IDL will normally have the same length for all active image lines. However, this timing relationship is not required by the protocol syntax, and the length of an IDL may vary from one active line to the next due to factors such as vertical scaling being performed by the image sensor. As shown in the example frame sequence at the bottom of Figure 2, an IDL of undetermined length also always precedes the initial frame of an ABB frame sequence.

As shown in Figure 2, the IDL of the last Active Image Line is followed by a series of Q vertical blanking lines, each of which is signaled by an SOV Sync Code. Each SOV is then followed by an IDL whose length is normally fixed by the image sensor throughout the vertical blanking interval and equal in length to the last active line; i.e. the total Word count in SOV + IDL equals the total Word count in SOL + (FLR) + AIL + (CRC) + IDL of active line P. The total number of vertical blanking lines is implementation-dependent and outside the scope of the HiSPi protocol.

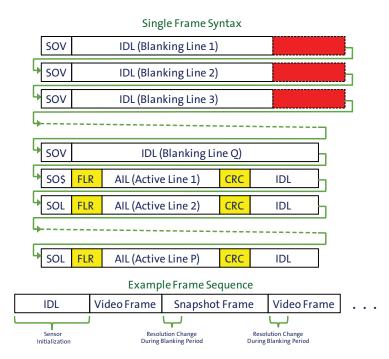
Figure 2: "Active-before-Blanking" (ABB) Frame Syntax

(SO\$ is SOF for Streaming-SP and SOL for Streaming-S; Yellow Indicates Optional Element)

Note that blanking line Q in Figure 2, which is the last vertical blanking line before the first active line of the next image frame, may be shorter or longer than the other blanking lines if the image frame format is reset or changed during the vertical blanking interval. Actual behavior is image sensor dependent. This condition is conceptually illustrated by the red box in Figure 2.

Note that a HiSPi Protocol Receiver capable of synchronizing to every Streaming-SP Sync Code does not need to know in advance the length of an AIL or IDL Period if the IDL Word consists of all 0-bits. In this case, the Receiver can unambiguously detect the

beginning of an IDL Period following an AIL (or CRC, if present) because an AIL or CRC in Streaming-SP Mode is not permitted to contain Words consisting of all 0-bits. However, if these lengths are known in advance, then the Receiver, in theory, does not have to resynchronize until the image frame format is reset or changed.

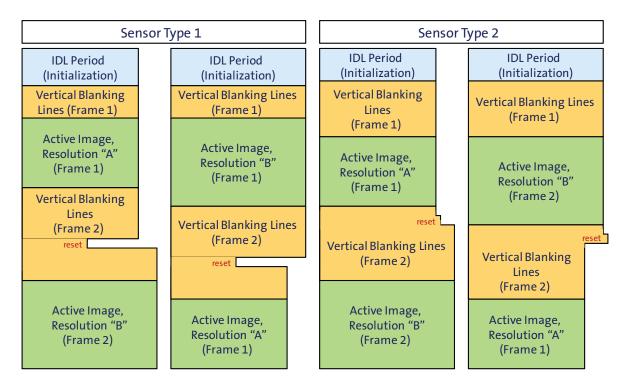

Also note that for the Streaming-S Mode, a HiSPi Protocol Receiver cannot determine when an AIL ends by observing IDL Words because it is possible for the IDL Word values of 011...1 and 100...0 to normally occur within an AIL. Therefore, for Streaming-S Mode, a HiSPi Protocol Receiver must have advance knowledge of the length of an AIL.

1.4.2.2 Blanking-Before-Active Submode

The Blanking-before-Active (BBA) submode differs from the ABB submode in that the first active line of an image frame is always preceded by at least one complete vertical blanking line whose length matches the length of the first image line. This is shown in Figure 3, where the total Word count of SOV + IDL in blanking line Q equals the total Word count of SOL + (FLR) + AIL + (CRC) + IDL in the first active line of the current frame. Furthermore, if the image frame format is reset or changed during the vertical blanking interval, then blanking line Q may be preceded by one or more blanking lines whose lengths are shorter or longer than that of blanking line Q.

Figure 3: "Blanking-Before-Active" (BBA) Frame Syntax

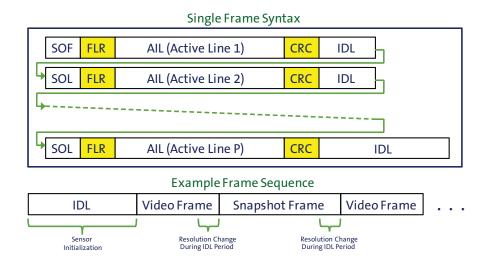
(SO\$ is SOF for Streaming-SP and SOL for Streaming-S; Yellow Indicates Optional Element)


The latter condition is conceptually illustrated by the red boxes in Figure 3. During normal, uninterrupted video streaming, blanking lines 1 through Q will each have the same length as the first active line of the current frame. However, if the image frame format is reset or changed during the first part of the vertical blanking interval shown in Figure 3, then: (1) each blanking line preceding the reset or change will have the same length as the last active line of the previous frame; (2) the length of the blanking line during which the reset or change occurs may be shorter or longer than the preceding blanking lines; and (3) each blanking line following the reset or change will have the

same length as the first active line of the current frame. See Figure 4 on page 10 for further examples of conditions (1), (2), and (3). Actual behavior is image sensor dependent.

The active image portion of the Blanking-before-Active frame shown in Figure 3 has exactly the same syntax as that described in Section 1.4.2.1 for Active-Before-Blanking frames.

Figure 4: Examples of Blanking-before-Active Frame Resolution Changes for Two Hypothetical Image Sensor Types



1.4.3 ActiveStart-SP8 Mode Syntax

As shown in Figure 5, the ActiveStart-SP8 Mode outputs an image frame as a series of P Active Image Lines (AILs), each of which is preceded by a Sync Code. Each AIL will normally have the same length, but this is not required by the protocol syntax.

Figure 5:ActiveStart-SP8 Mode Frame Syntax

(Yellow Indicates Optional Element)

An SOF Sync Code precedes the first AIL of an image frame; otherwise, an AIL is preceded by an SOL Sync Code. The Sync Code is then optionally followed by a Filler Code (FLR) which may be inserted to give the Receiver more time to process the Sync Code. Each AIL is optionally followed by a Checksum (CRC).

An Idle Period (IDL) always follows the AIL or CRC. The timing of the IDL may roughly correspond to an imager's horizontal or vertical blanking interval, but this is not required by the HiSPi protocol. As shown at the bottom of Figure 5, an IDL of undetermined length always precedes the initial frame of a frame sequence.

Note that a HiSPi Protocol Receiver capable of synchronizing to every ActiveStart-SP8 Sync Code does not need to know in advance the length of an AIL or IDL Period if the IDL Word consists of either all 0- or 1-bits. In this case, the Receiver can unambiguously detect the beginning of an IDL Period following an AIL (or CRC, if present) since an AIL or CRC is not permitted to contain Words consisting of all 0- or 1-bits. However, if these lengths are known in advance, then the Receiver, in theory, does not have to resynchronize until the output image format is reset or changed.

2 Syntax Element Descriptions

2.1 Protocol Words

Each of the syntax elements in Table 1 is transmitted as one or more L-bit Words, where L = 8, 10, 12, 14, or 16. The Word size must be understood by both the HiSPi Transmitter and Receiver and must remain fixed throughout the transmission of an image frame. Generally, L will match the active pixel precision, but this is not required by the HiSPi Protocol.

A Protocol Word is serially transmitted as a complete unit on a PHY data Lane; i.e. the bits making up a Word are never split between Lanes. Protocol Words are assigned to Lanes using two methods, Lane striping and Lane duplication, which may also be used in combination. Lane striping sequentially assigns each Word of a syntax element to a different data Lane, whereas Lane duplication copies a Word to multiple Lanes. The methods used vary by both syntax element and Mode.

2.2 Sync Codes (SO*/EO*)

For the Packetized-SP, Streaming-SP, and Streaming-S Modes, each of the five Sync Codes listed in Table 1 consists of four L-bit Words. The first three Words of each Sync Code always consist of a single Word of all 1-bits followed by two Words of all 0-bits. The contents of the fourth Word depend on the selected HiSPi Mode and how the Sync Code is used.

However, for the ActiveStart-SP8 Mode, each of the SOF and SOL Sync Codes listed in Table 1 on page 6 consists of eight L-bit Words.

2.2.1 SP Modes

For the Packetized- and Streaming-SP Modes, the fourth Sync Code Word is defined as shown in Table 2. Bit 0 is always transmitted first. Note that the "E" bit in the SOF and SOL Sync Codes signals whether the AIL following the Sync Code contains pixels or embedded data; this option is discussed later in Section 2.4. All Packetized- and Streaming-SP Sync Codes are physically transmitted using Lane duplication; i.e. each four-Word Sync Code is duplicated and sequentially transmitted on each of the N*K Lanes. See Table 3 for examples.

Table 2: Word 4 of Packetized- and Streaming-SP Sync Codes

Sync Code Description	Which SP	Bit O	Bit 1	Bit 2	Bit 3	Bit 4	Bits 5: (L-1)
SOF: start of active frame; E = 0 implies pixel data, E = 1 implies embedded data	Both	1	1	0	0	E	Reserved
SOL: start of active line; E = 0 implies pixel data, E = 1 implies embedded data	Both	1	0	0	0	E	Reserved
EOF: end of active frame	Packetized	1	1	1	Res	Res	Reserved
EOL: end of active line	Packetized	1	0	1	Res	Res	Reserved
SOV: start of vertical blanking line	Streaming	1	0	0	1	Res	Reserved

PHY	Lane	Cycle 1	Cycle 2	Cycle 3	Cycle 4
1	1	1111	0000	0000	Sync Code, Word 4
1	2	1111	0000	0000	Sync Code, Word 4
1	К	1111	0000	0000	Sync Code, Word 4
2	1	1111	0000	0000	Sync Code, Word 4
2	2	1111	0000	0000	Sync Code, Word 4
•••					
2	К	1111	0000	0000	Sync Code, Word 4
•••					
N	1	1111	0000	0000	Sync Code, Word 4
N	2	1111	0000	0000	Sync Code, Word 4
•••					
Ν	К	1111	0000	0000	Sync Code, Word 4

Table 3: Sync Code Transmission for Packetized- and Streaming-SP Modes (N \ge 1, K \le 8)

Note:

te: Sync Code Word 1 always consists of all 1s, whereas each of Sync Code Words 2 and 3 always consists of all 0s.

2.2.2 Streaming-S Mode

For the Streaming-S Mode, the fourth Sync Code Word is defined as shown in Table 4. Bit 0 is always transmitted first. All Streaming-S Sync Codes are physically transmitted using a combination of Lane duplication and Lane striping; in this case, a given four Word Sync Code is duplicated for each of the N PHYs, but the Words making up each Sync Code are striped across the K Lanes of each PHY. This means that the m-th Sync Code Word (for m = 1, 2, 3, or 4) is transmitted on Lane [(m-1) *mod* K] + 1 for each of PHYs 1 through N. Note that for the Streaming-S Mode, K must equal 1, 2, 4, or 8 (with K = 8 only being permitted for N = 1), so Word 4 will always be transmitted on Lane K of every PHY. See Table 5 for examples.

Table 4:Word 4 of Streaming-S Sync Codes

Sync Code Description	Bit O	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7	Bits 8: (L-1)
SOL: start of active line	1	0	0	0	0	0	0	0	0000
SOV: start of vertical blanking line	1	0	1	0	1	0	1	1	0000

 Table 5:
 Streaming-S Sync Code Transmission Examples

PHY	Lane	Cycle 1	Cycle 2	Cycle 3	Cycle 4					
		2 PHYs	with 4 Active Lanes Per Pl	IY						
1	1	1111								
1	2	0000	Pixels or Vertical Blanking Words							
1	3	0000	(as appropriate)							
1	4	Sync Code, Word 4		(as appropriate)						
2	1	1111	-							
2	2	0000								
2	3	0000								
2	4	Sync Code, Word 4								
		2 PHYs	with 2 Active Lanes Per Pł	łY						
1	1	1111	0000	Pixels or Vertical Blanki	ng Words (as appropriate					
1	2	0000	Sync Code, Word 4	1						
2	1	1111	0000	1						
2	2	0000	Sync Code, Word 4	7						
		2 PHYs	with 1 Active Lane Per PH	ΙΥ						
1	1	1111	0000	0000	Sync Code, Word 4					
2	1	1111	0000	0000	Sync Code, Word 4					
	•	1 P	HY with 8 Active Lanes							
1	1	1111								
1	2	0000	-							
1	3	0000	Pix	kels or Vertical Blanking W	/ords					
1	4	Sync Code, Word 4		(as appropriate)						
1	5	1111								
1	6	0000								
1	7	0000	-							
1	8	Sync Code, Word 4								
		1 P	HY with 4 Active Lanes							
1	1	1111								
1	2	0000	Pix	els or Vertical Blanking W	/ords					
1	3	0000		(as appropriate)						
1	4	Sync Code, Word 4								
		1 P	HY with 2 Active Lanes							
1 1 1111			0000 Pixels or Vertical Blanking Words							
1	2	0000	Sync Code, Word 4		propriate)					
		11	PHY with 1 Active Lane	1						
1	1	1111	0000	0000	Sync Code, Word 4					
	Note:		/s consists of all 1s, where		-					

of all 0s.

2.2.3 ActiveStart-SP8 Mode

Unlike the Packetized-SP, Streaming-SP, and Streaming-S Modes, the ActiveStart-SP8 Mode does not mandate any specific Sync Code values; rather, these values may be userdefined within all Aptina sensors supporting the ActiveStart-SP8 Mode. Such sensors

may have default (i.e. reset) Sync Code values, but these defaults are not required to be supported by a HiSPi Protocol Receiver. The general guidelines for defining ActiveStart-SP8 Sync Codes are as follows:

- 1. An SOF or SOL Sync Code must consist of an ordered sequence of eight L-bit Words, each of which consists entirely of 1- or 0-bits.
- 2. SOF and SOL Sync Codes must not match.
- 3. SOF and SOL Sync Code patterns must not appear as a sequence of eight IDL Words.
- 4. SOF and SOL Sync Code patterns should be chosen such that they cannot naturally occur within sequences of pixels or embedded data whose values are constrained as described in Section 2.4, implying that each 8*L-bit Sync Code should contain at least one run of consecutive 1- or 0-bits which is at least 2*L 1 bits long. Sync Codes may violate this guideline, but their detection must then be enabled only during IDL Periods when no pixel or embedded data are expected.

Table 6 shows examples of default ActiveStart-SP8 Sync Codes for two Aptina sensors. Note that the fourth guideline above is violated by the MT9E501's default SOL Sync Code; see Section 4.3 for further discussion.

Sync Code Description	Word 1	Word 2	Word 3	Word 4	Word 5	Word 6	Word 7	Word 8
MT9H004 Defaults								
SOF: start of active frame	0000	0000	0000	0000	1111	0000	0000	1111
SOL: start of active line	0000	0000	0000	0000	1111	0000	0000	0000
	MT9E501 Defaults							
SOF: start of active frame	1111	0000	1111	0000	1111	1111	1111	1111
SOL: start of active line	1111	0000	1111	0000	1111	0000	1111	0000

Like the Packetized- and Streaming-SP Sync Codes, the ActiveStart-SP8 Sync Codes are physically transmitted using Lane duplication; as shown in Table 7, each eight-Word Sync Code is duplicated and sequentially transmitted on each of the N*K Lanes starting with Word 1.

Table 7:ActiveStart-SP8 Sync Code Transmission (N \ge 1, K \le 8)

PHY	Lane	Cycle 1	Cycle 2	Cycle 3	Cycle 4	Cycle 5	Cycle 6	Cycle 7	Cycle 8
1	1	Word 1	Word 2	Word 3	Word 4	Word 5	Word 6	Word 7	Word 8
1	2	Word 1	Word 2	Word 3	Word 4	Word 5	Word 6	Word 7	Word 8
1	K	Word 1	Word 2	Word 3	Word 4	Word 5	Word 6	Word 7	Word 8
2	1	Word 1	Word 2	Word 3	Word 4	Word 5	Word 6	Word 7	Word 8
2	2	Word 1	Word 2	Word 3	Word 4	Word 5	Word 6	Word 7	Word 8
2	K	Word 1	Word 2	Word 3	Word 4	Word 5	Word 6	Word 7	Word 8
N	1	Word 1	Word 2	Word 3	Word 4	Word 5	Word 6	Word 7	Word 8
N	2	Word 1	Word 2	Word 3	Word 4	Word 5	Word 6	Word 7	Word 8
N	К	Word 1	Word 2	Word 3	Word 4	Word 5	Word 6	Word 7	Word 8

2.3 Filler Code (FLR)

The optional Filler Code (FLR) consists of a single Word formatted as shown in Table 8 and transmitted once (that is, duplicated) on each of the N*K Lanes. Bit 0 is always transmitted first.

Table 8: Filler Code Word

Bits 0:(L-2)	Bit (L-1)
0000	1

2.4 Active Image Line (AIL)

Active image lines (AILs) hold the pixels or embedded data making up the active portion of each image frame. More than one complete pixel may be packed within each Word of an AIL; for example, two 7-bit pixels may be packed into a single 14-bit Word. A single pixel may also be split between two or more Words; for example, a 20-bit pixel may be transmitted using two 10-bit Words. The rules governing how multiple pixels may be packed into a single Word or how a single pixel may be split between multiple Words are product-specific.

Note that only the SOF and SOL Sync Codes as used by the Packetized- and Streaming-SP Modes support explicit signaling of embedded data on a line-by-line basis. Normally, an image sensor may optionally output one or more embedded data lines before and/or after all image pixel lines; however, the number, location, and contents of embedded data lines within a frame are beyond the scope of this specification.

A sequence of M pixel or embedded data Words making up an AIL is always physically transmitted using Lane-striping. This means that the m-th Word of an AIL (for m = 1, 2, ...) is always transmitted on Lane $((m-1) \mod K) + 1$ of PHY *ceil* [(m-1)/N] (where *mod* is the modulo operator, and *ceil* is the "smallest integer greater than or equal to" ceiling operator). Note that M must be an integer multiple of N*K, thereby ensuring that the first Word in an AIL is always transmitted on Lane 1 of PHY 1, and the last Word of an AIL is always transmitted on Lane 1 of PHY 1, and the last Word of an AIL is always transmitted on Lane 1 of PHY 1. For such cases, a HiSPi Protocol Receiver must be aware of the number of trailing "padding" Words in an AIL so they may be discarded later. The contents of padding Words are not specified. See Table 9 for examples.

Unlike Sync Codes, the bit transmission order for AIL Words may be either LSB or MSB first. This order must be understood by both the HiSPi Protocol Transmitter and Receiver, since it is not signaled as part of the HiSPi protocol.

To avoid the creation of false Sync Codes, AILs created for the Streaming-S and Active-Start-SP8 Modes may not contain any Words consisting entirely of 1- or 0-bits. A HiSPi Protocol Transmitter generally enforces this rule by clipping L-bit pixel values to the range [1, 2^L - 2]. However, for the Packetized-SP and Streaming-SP Modes, AILs are simply forbidden from containing Words consisting entirely of 0-bits. To enforce this rule, a HiSPi Protocol Transmitter generally clips L-bit pixel values to the range [1, 2^L - 1].

Table 9:	Examples of AIL Word Stripping
----------	--------------------------------

PHY	Lane	Cycle 1	Cycle 2	Cycle 3	Cycle 4
	2 PHYs with	4 Active Lanes Per I	PHY (AIL = 27 Total P	Pixels + 5 Padding V	Vords)
1	1	Word 1	Word 9	Word 17	Word 25
1	2	Word 2	Word 10	Word 18	Word 26
1	3	Word 3	Word 11	Word 19	Word 27
1	4	Word 4	Word 12	Word 20	Padding Word
2	1	Word 5	Word 13	Word 21	Padding Word
2	2	Word 6	Word 14	Word 22	Padding Word
2	3	Word 7	Word 15	Word 23	Padding Word
2	4	Word 8	Word 16	Word 24	Padding Word
		2 PHYs wit	h 3 Active Lanes Per	РНҮ	
1	1	Word 1	Word 7	Word 13	Word 19
1	2	Word 2	Word 8	Word 14	Word 20
1	3	Word 3	Word 9	Word 15	Word 21
2	1	Word 4	Word 10	Word 16	Word 22
2	2	Word 5	Word 11	Word 17	Word 23
2	3	Word 6	Word 12	Word 18	Word 24
		2 PHYs wit	h 2 Active Lanes Per	РНҮ	·
1	1	Word 1	Word 5	Word 9	Word 13
1	2	Word 2	Word 6	Word 10	Word 14
2	1	Word 3	Word 7	Word 11	Word 15
2	2	Word 4	Word 8	Word 12	Word 16
		2 PHYs wit	h 1 Active Lane Per	РНҮ	•
1	1	Word 1	Word 3	Word 5	Word 7
2	1	Word 2	Word 4	Word 6	Word 8
		1 PHY	with 1 Active Lane	•	•
1	1	Word 1	Word 2	Word 3	Word 4

2.5 Checksum (CRC)

The optional Checksum is computed as a 16-bit CRC with generator polynomial $x^{16} + x^{12} + x^5 + 1$. During each AIL, a single CRC is computed over each Lane's optional FLR and AIL Words plus, for the Packetized-SP Mode, the four footer Sync Code Words (i.e. EOL or EOF). In essence, the Checksum is a vector of N*K CRCs whose values are striped across the N*K data Lanes. Each 16-bit CRC value, that is, C[15:0], is output on its respective Lane as two successive Words formatted as shown in Table 10. The Checksum bits are serially transmitted on each Lane following the same bit order selected for pixels and embedded data. If "LSB first" is selected, then Bit 0 in Table 10 is transmitted first for each Word; otherwise, Bit (L-1) is transmitted first. See Table 11 on page 18 for a simple Checksum transmission example.

Note that the HiSPi Protocol does not permit Checksum transmission for L = 8 (i.e. 8-bit Words), nor does it specify the action a HiSPi Protocol Receiver should take if it detects a Checksum error in a received image line.

Table 10: Checksum Format

	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7	Bit 8	Bits 9: (L-1)
CRC Word 1	C[8]	C[9]	C[10]	C[11]	C[12]	C[13]	C[14]	C[15]	1	0000
CRC Word 2	C[0]	C[1]	C[2]	C[3]	C[4]	C[5]	C[6]	C[7]	1	0000

 Table 11:
 Checksum Transmission Example: Single 4-Lane PHY

PHY	Lane	Cycle 1	Cycle 2
1	1	Word 1 of Lane 1 CRC	Word 2 of Lane 1 CRC
1	2	Word 1 of Lane 2 CRC	Word 2 of Lane 2 CRC
1	3	Word 1 of Lane 3 CRC	Word 2 of Lane 3 CRC
1	4	Word 1 of Lane 4 CRC	Word 2 of Lane 4 CRC

2.6 Idle Period (IDL)

The Idle Period (IDL) syntax element is used by all Modes but is formatted differently for the Streaming-S Mode. The number of Words in an IDL sequence must be an integer multiple of N*K to ensure that the next Sync Code starts on Lane 1 of PHY 1. If an IDL is being used to create a vertical blanking line for the Streaming-SP or Streaming-S Mode as shown in Figure 2 on page 8 and Figure 3 on page 9, its length (in the absence of sensor resets) is normally fixed throughout the vertical blanking interval and equal to the active line length (i.e. the total Word count in SOV + IDL equals the total Word count in SOF/SOL + (FLR) + AIL + (CRC) + IDL).

For the Packetized-SP, Streaming-SP, and ActiveStart-SP8 Modes, IDL consists of a sequence of identical Words. This Word may be user-defined, but the default value is 2^{L} -1 (that is, all 1-bits) for each of the SP Modes and 0 (i.e. all 0-bits) for the ActiveStart-SP8 Mode.

The Streaming-S Mode defines the IDL sequence as two alternating, complementary cycles of N*K identical Words, where each Word in each cycle is defined as shown in Table 12; Bit 0 is always transmitted first.

Table 12:Streaming-S IDL Words

	Bit 0	Bits 1: (L-1)
L-bit Word for cycles 1, 3, 5,	0	1111
L-bit Word for cycles 2, 4, 6,	1	0000

Note that while the total number of Words in a Streaming-S IDL must be an integer multiple of N*K, it does not have to be an even multiple; i.e. the IDL may end with either Word value. During transmission, the IDL is striped across the N*K data Lanes, effectively resulting in the two complementary Word patterns of Table 12 alternating on each Lane. See Table 13 for examples.

Table 13: Streaming-S IDL Examples

PHY	Lane	Cycle 1	Cycle 2	Cycle 3	Cycle 4										
	1 PH	Ys with 4 Active Lane	es; IDL = 4 Words/Cy	cle, 12 Total Words											
1	1	0111	1000	0111											
1	2	0111	1000	0111											
1	3	0111	1000	0111											
1	4	0111	1000	0111											
	2 PHYs with 2 Active Lanes Per PHY; IDL = 4 Words/Cycle, 16 Total Words														
1															
1	2	0111	1000	0111	1000										
2	1	0111	1000	0111	1000										
2	2	0111	1000	0111	1000										
	2 PHYs	with 1 Active Lane Pe	er PHY; IDL = 2 Words	s/Cycle, 8 Total Word	ls										
1	1	0111	1000	0111	1000										
2	1	0111	1000	0111	1000										

3 Protocol Examples

The protocol examples in this section exhibit the Word-level structure of each HiSPi frame format for a four-Lane PHY. Each box in each of the following four figures below corresponds to one Word within a protocol syntax element, with the box label indicating the syntax element, and the subscript of each label indicating the Word number within the Word sequence comprising the element. For example, SOF_4 is Word 4 of the four-Word SOF Sync Code, and FLR_1 is the first (and only) Word comprising the Filler Code. Moreover, the superscript of each CRC Word indicates the Lane number the CRC is computed over.

Figure 6: Four-Lane Example of Packetized-SP Mode Frame Format (16 Pixels/Line)

Lane 1	1111	0000	0000	SOF ₄	FLR 1	AIL_1	AIL ₅	AIL ₉	AIL ₁₃	1111	0000	0000	EOL ₄	CRC ¹	CRC ¹ ₂	IDL_1	IDL_1
Lane 2	1111	0000	0000	SOF_4	FLR_1	AIL ₂	AIL_6	AIL ₁₀	AIL ₁₄	1111	0000	0000	EOL_4	CRC_1^2	CRC_2^2	IDL_1	IDL ₁
Lane 3	1111	0000	0000	SOF_4	FLR_1	AIL ₃	AIL ₇	AIL ₁₁	AIL ₁₅	1111	0000	0000	EOL_4	CRC ³	CRC ³ ₂	IDL_1	IDL ₁
Lane 4	1111	0000	0000	SOF_4	FLR_1	AIL_4	AIL ₈	AIL_{12}	AIL ₁₆	1111	0000	0000	EOL_4	CRC_1^4	CRC ⁴ ₂	IDL_1	IDL_1

Intermediate Active Lines

First Active Line

Lane 1	1111	0000	0000	SOL_4	FLR 1	AIL_1	AIL ₅	AIL ₉	AIL ₁₃	1111	0000	0000	EOL ₄	CRC_1^1	CRC_{2}^{1}	IDL_1	IDL_1
Lane 2	1111	0000	0000	SOL_4	FLR_1	AIL ₂	AIL_6	AIL ₁₀	AIL_{14}	1111	0000	0000	EOL ₄	CRC_1^2	CRC_2^2	IDL_1	IDL_1
Lane 3	1111	0000	0000	SOL_4	FLR_1	AIL ₃	AIL ₇	AIL_{11}	AIL ₁₅	1111	0000	0000	EOL ₄	CRC ³ ₁	CRC ³ ₂	IDL_1	IDL_1
Lane 4	1111	0000	0000	SOL_4	FLR_1	AIL_4	AIL ₈	AIL ₁₂	AIL_{16}	1111	0000	0000	EOL_4	CRC_1^4	CRC_2^4	IDL_1	IDL_1

Lane 1	1111	0000	0000	SOL_4	FLR_1	AIL_1	AIL_5	AIL ₉	AIL ₁₃	1111	0000	0000	EOF ₄	CRC_1^1	CRC_2^1	IDL_1	IDL_1	IDL_1
Lane 2	1111	0000	0000	SOL_4	FLR_1	AIL_2	AIL_6	AIL ₁₀	AIL ₁₄	1111	0000	000	EOF_4	CRC_1^2	CRC_2^2	IDL_1	IDL_1	IDL_1
Lane 3	1111	0000	0000	SOL_4	FLR_1	AIL ₃	AIL ₇	AIL_{11}	AIL ₁₅	1111	0000	000	EOF_4	CRC ³ ₁	CRC_2^3	IDL_1	IDL_1	IDL_1
Lane 4	1111	0000	0000	SOL_4	FLR_1	AIL_4	AIL ₈	AIL_{12}	AIL ₁₆	1111	0000	000	EOF_4	CRC_1^4	CRC_2^4	IDL_1	IDL_1	IDL_1

Last Active Line

PDF: 4485381123/Source: 6739233107 HiSPi Interface Protocol V1.50.00 - Rev. B Pub. 6/11 EN

Figure 7: Four-Lane Example of Streaming-SP Mode Frame Format (16 Pixels/Line)

First Active Line

Lane 1	1111	0000	0000	SOF_4	FLR_1	AIL_1	AIL_5	AIL ₉	AIL ₁₃	CRC_1^1	CRC_2^1	IDL_1	IDL ₁
Lane 2	1111	0000	0000	SOF_4	FLR_1	AIL ₂	AIL_6	AIL_{10}	AIL_{14}	CRC_1^2	CRC_2^2	IDL_1	IDL ₁
Lane 3	1111	0000	0000	SOF_4	FLR 1	AIL ₃	AIL ₇	AIL_{11}	AIL ₁₅	CRC ³ ₁	CRC ³ ₂	IDL ₁	IDL ₁
Lane 4	1111	0000	0000	SOF_4	FLR_1	AIL_4	AIL ₈	AIL_{12}	AIL_{16}	CRC_1^4	CRC_2^4	IDL_1	IDL ₁

Lane 1 000...0 000...0 **SOL**₄ FLR 1 AIL₉ CRC¹ CRC¹₂ IDL₁ 111...1 AIL₁ AIL₅ AIL₁ IDL₁ Lane 2 SOL₄ AIL₁₀ CRC²₁ CRC² IDL₁ 111...1 000...0 000...0 FLR₁ AIL₂ AIL₆ AIL₁₄ IDL₁ Lane 3 111...1 000...0 000...0 **SOL**₄ FLR₁ AIL₃ AIL₇ AIL₁₁ AIL 1 CRC³ CRC³₂ IDL₁ IDL₁ CRC⁴ AIL₈ CRC⁴ Lane 4 111...1 000...0 000...0 SOL FLR 1 AIL₄ AIL₁₂ AIL 16 IDL IDL

Intermediate and Last Active Lines

Vertical Blanking Lines

							0						
Lane 1	1111	0000	0000	SOV_4	IDL_1	IDL_1	IDL_1	IDL_1	IDL_1	IDL_1	IDL_1	IDL_1	IDL ₁
Lane 2	1111	0000	0000	SOV_4	IDL_1	IDL ₁	IDL ₁	IDL_1	IDL ₁	IDL_1	IDL_1	IDL_1	IDL ₁
Lane 3	1111	0000	0000	SOV_4	IDL_1	IDL_1	IDL_1	IDL_1	IDL_1	IDL_1	IDL_1	IDL_1	IDL ₁
Lane 4	1111	0000	0000	SOV_4	IDL_1	IDL_1	IDL_1	IDL_1	IDL_1	IDL_1	IDL_1	IDL_1	IDL_1

Figure 8: Four-Lane Example of Streaming-S Mode Frame Format (16 Pixels/Line)

Active Lines

Lane 1				-	-	-				
Lane 2	0000	FLR ₁	AIL ₂	AIL_6	AIL ₁₀	AIL_{14}	CRC_1^2	CRC_2^2	IDL ₁	IDL ₂
Lane 3	0000	FLR ₁	AIL ₃	AIL ₇	AIL ₁₁	AIL ₁₅	CRC_{1}^{3}	CRC_2^3	IDL_1	IDL ₂
Lane 4	SOL_4	FLR ₁	AIL ₄	AIL ₈	AIL_{12}	AIL_{16}	CRC_1^4	CRC_2^4	IDL_1	IDL ₂

Vertical Blanking Lines

| Lane 1 | 1111 | IDL ₁ | IDL ₂ | IDL_1 |
|--------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| Lane 2 | 0000 | IDL ₁ | IDL ₂ | IDL ₁ |
| Lane 3 | 0000 | IDL_1 | IDL ₂ | IDL_1 |
| Lane 4 | SOV ₄ | IDL ₁ | IDL ₂ | IDL ₁ |

Figure 9

ıre 9:	Four-Lane Example of ActiveStart-SP8 Mode Frame Format (16 Pixels/Line)

							F	irst A	ctive	Line							
Lane 1	SOF_1	SOF ₂	SOF_3	SOF_4	SOF_5	SOF_6	SOF ₇	SOF ₈	FLR_1	AIL_1	AIL_5	AIL ₉	AIL ₁₃	CRC_1^1	CRC_{2}^{1}	IDL_1	IDL_1
Lane 2	SOF_1	SOF ₂	SOF ₃	SOF_4	SOF_5	SOF_6	SOF ₇	SOF ₈	FLR ₁	AIL_2	AIL_6	AIL ₁₀	AIL ₁₄	CRC_1^2	CRC_{2}^{2}	IDL_1	IDL_1
Lane 3	SOF_1	SOF ₂	SOF ₃	SOF_4	SOF 5	SOF ₆	SOF ₇	SOF ₈	FLR_1	AIL ₃	AIL ₇	AIL ₁₁	AIL ₁₅	CRC ³ ₁	CRC ³ ₂	IDL_1	IDL_1
Lane 4	SOF_1	SOF ₂	SOF_3	SOF_4	SOF_5	SOF_6	SOF ₇	SOF ₈	FLR_1	AIL_4	AIL ₈	AIL_{12}	AIL_{16}	CRC_1^4	CRC ⁴ ₂	IDL_1	IDL_1

Intermediate Active Lines

Lane 1	SOL_1	SOL ₂	SOL ₃	SOL_4	SOL_5	SOL_6	SOL ₇	SOL ₈	FLR_1	AIL_1	AIL ₅	AIL ₉	AIL ₁₃	CRC_{1}^{1}	CRC_{2}^{1}	IDL_1	IDL_1
Lane 2	SOL_1	SOL ₂	SOL ₃	SOL_4	SOL_5	SOL_6	SOL ₇	SOL ₈	FLR ₁	AIL ₂	AIL_6	AIL ₁₀	AIL_{14}	CRC ² ₁	CRC_2^2	IDL_1	IDL ₁
Lane 3	SOL_1	SOL ₂	SOL_3	SOL_4	SOL_5	SOL_6	SOL ₇	SOL ₈	FLR_1	AIL ₃	AIL ₇	AIL ₁₁	AIL ₁₅	CRC ³ ₁	CRC ³ ₂	IDL_1	IDL_1
Lane 4	SOL_1	SOL ₂	SOL ₃	SOL ₄	SOL ₅	SOL ₆	SOL ₇	SOL ₈	FLR ₁	AIL ₄	AIL ₈	AIL ₁₂	AIL ₁₆	CRC ⁴ ₁	CRC ⁴ ₂	IDL ₁	IDL_1

							-											
Lane 1	SOL_1	SOL_2	SOL_3	SOL_4	SOL_5	SOL_6	SOL ₇	SOL ₈	FLR ₁	AIL_1	AIL_5	AIL ₉	AIL ₁₃	CRC_1^1	CRC_2^1	IDL_1	IDL_1	IDL_1
Lane 2																		
Lane 3	SOL_1	SOL ₂	SOL ₃	SOL_4	SOL ₅	SOL ₆	SOL ₇	SOL ₈	FLR 1	AIL ₃	AIL ₇	AIL	AIL ₁₅	CRC ³ ₁	CRC ³ ₂	IDL_1	IDL_1	IDL ₁
Lane 4	SOL ₁	SOL_2	SOL ₃	SOL_4	SOL ₅	SOL ₆	SOL ₇	SOL ₈	FLR ₁	AIL_4	AIL ₈	AIL ₁₂	AIL ₁₆	CRC ⁴ ₁	CRC ⁴ ₂	IDL_1	IDL_1	IDL_1

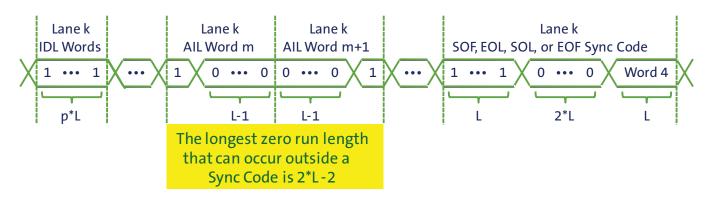
Last Active Line

4 Receiver Sync Code Detection

HiSPi Protocol Sync Codes serve two primary purposes: (1) they enable HiSPi Receivers to identify and synchronize to Word boundaries within serial bit streams, and (2) depending upon the selected Protocol Mode, they enable HiSPi Receivers to discriminate between active and blanking lines as well as determine the length and content of active lines.

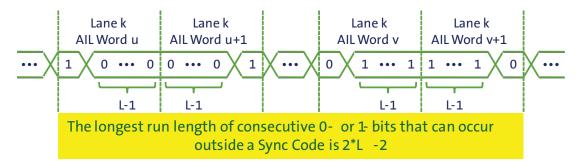
Note that each HiSPi Receiver PHY/deserializer receives a separate clock signal from the Transmitter which may have a different phase relative to the clocks received by other PHYs. Therefore, the Words received by one PHY will eventually require timing resynchronization with the Words received by other PHYs. Furthermore, Sync Codes may conceivably be detected using either bit-serial or Word-parallel logic associated with each PHY.

4.1 Packetized- and Streaming-SP Modes


Sync Codes are detected using the same procedure for the Packetized-SP and Streaming-SP Modes. As described in Section 2.2.1, each Sync Code is four L-bit Words long and identically transmitted on each data Lane of every PHY. As such, a Sync Code may be detected using bits received from only a single data Lane of a given HiSPi Receiver PHY.

A HiSPi Packetized- or Streaming-SP Transmitter using the default IDL Word of all 1-bits will never output an L-bit Word of all 0-bits except during a Sync Code (however, runs of up to 2*L - 2 consecutive 0-bits may still occur across Word boundaries). Therefore, a Sync Code may be detected on any given data Lane by observing a stream of 2*L - 1 or 2*L consecutive 0-bits (i.e. if 2*L - 1 consecutive 0-bits are observed, then the protocol guarantees that the next bit will also be 0). Furthermore, Word 4 of the Sync Code consists of the next L-bits to follow the 2*L consecutive 0-bits. See Figure 10 on page 23.

Aptina Confidential and Proprietary



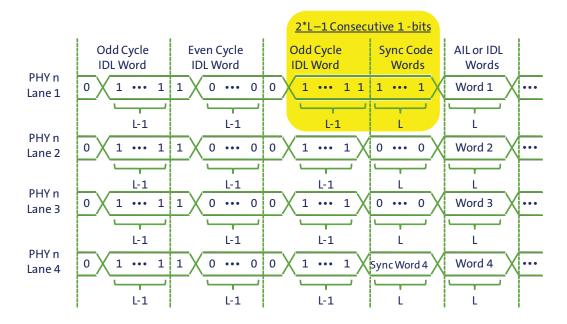
4.2 Streaming-S Mode

For applications using only a single data Lane, the Streaming-S Sync Code detection procedure is the same as that for the Packetized- and Streaming-SP Modes. However, the procedure is a bit more complicated for Streaming-S applications with two, four, or eight active data Lanes per PHY because the four-Word Sync Code is striped across the data Lanes within each PHY as described in Section 2.2.2.

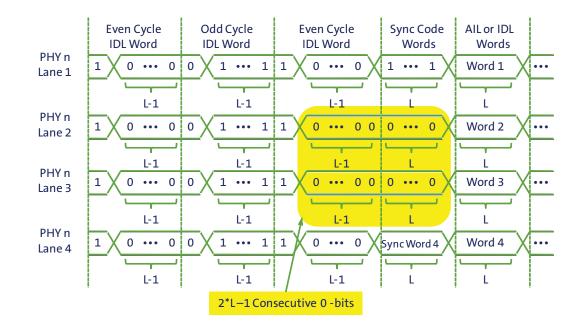
As shown in Figure 11, a HiSPi Streaming-S Receiver will never encounter a sequence of consecutive 0- or 1-bits longer than 2*L - 2 bits. This is because HiSPi Streaming-S Transmitters never output an L-bit Word of all 0- or 1-bits except during a Sync Code. This fact, when combined with the special format of Streaming-S IDL Words as described in Section 2.6, makes it possible to define robust Sync Code detection procedures for Streaming-S Receivers using one, two, four, or eight active data Lanes per PHY.

Figure 11: Maximum-Length Sequences of Consecutive 0- and 1-Bits

As shown in Figure 2 on page 8 and Figure 3 on page 9, a Streaming-S Sync Code is always immediately preceded by one or more IDL Words. As such, the Sync Code detection procedure must accommodate the two different formats a Streaming-S IDL Word can take just prior to the occurrence of a Sync Code. These formats are shown in Table 12 on page 19 and alternate between odd- and even-numbered cycles during an IDL Word sequence. In one case, a Sync Code is immediately preceded by an odd-cycle IDL Word; in the other, a Sync Code is immediately preceded by an even-cycle IDL Word.



4.2.1 Four (or Eight) Active Data Lanes Per PHY


Figure 12 depicts the case of a Streaming-S Sync Code which has been striped over four data Lanes and is immediately preceded by an odd-cycle IDL Word on each Lane. In this case, a Sync Code may be detected within a PHY by observing 2*L - 1 consecutive 1-bits on Lane 1. Figure 13 on page 25 depicts the alternate case where the same Sync Code is immediately preceded on each Lane by an even-cycle IDL Word; in this case, it may be seen that a Sync Code may be detected by observing 2*L - 1 consecutive 0-bits on Lanes 2 or 3. In either case, the final L-bits of the last 2*L - 1 bits observed on Lane 4 during Sync Code detection correspond to Word 4 of the Sync Code. Note that in general, a Streaming-S Receiver cannot anticipate the length of an IDL Word sequence, so it must simultaneously search Lanes 1 and 2 (or alternatively Lanes 1 and 3) for a Sync Code occurrence.

The cases described above for a 4-Lane PHY also apply to an 8-Lane PHY, since only the latter's first four data Lanes need be used for Sync Code detection.

Figure 12: Four-Lane Streaming-S Sync Code Immediately Preceded by an Odd-Cycle IDL Word

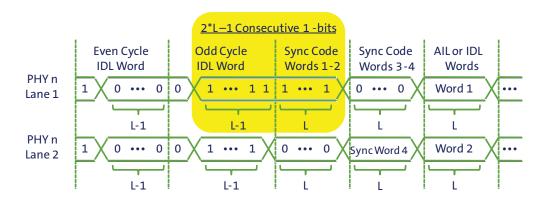
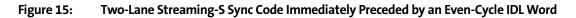


Figure 13: Four-Lane Streaming-S Sync Code Immediately Preceded by an Even-Cycle IDL Word


4.2.2 Two Active Data Lanes Per PHY

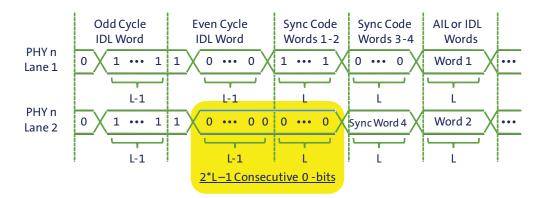

Figure 14 depicts the case of a Streaming-S Sync Code which has been striped over two data Lanes and is immediately preceded by an odd-cycle IDL Word on each Lane. In this case, a Sync Code may be detected within a PHY by observing 2*L - 1 consecutive 1-bits on Lane 1. Figure 15 on page 26 depicts the alternate case where the same Sync Code is immediately preceded on each Lane by an even-cycle IDL Word; in this case, it may be seen that a Sync Code may be detected by observing 2*L - 1 consecutive 0-bits on Lane 2. In either case, the next L-bits observed on Lane 2 during Sync Code detection correspond to Word 4 of the Sync Code. As noted for four active Lanes per PHY, a Streaming-S Receiver with two active Lanes per PHY generally cannot anticipate the length of an IDL Word sequence, so it must simultaneously search Lanes 1 and 2 for a Sync Code occurrence.

Figure 14: Two-Lane Streaming-S Sync Code Immediately Preceded by an Odd-Cycle IDL Word

4.2.3 One Active Data Lane Per PHY

Finally, as was previously stated, Sync Codes for the single-Lane case may be detected using the same procedure employed for the Packetized- and Streaming-SP Modes. That is, a Sync Code may be detected by observing a stream of 2*L - 1 or 2*L consecutive 0-bits (i.e. if 2*L - 1 consecutive 0-bits are observed, then the protocol guarantees that the next bit will also be 0), and Word 4 of the Sync Code consists of the next L-bits following the 2*L consecutive 0-bits.

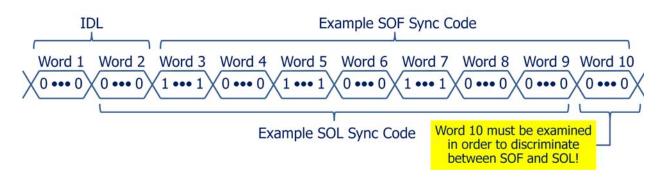
4.3 ActiveStart-SP8 Mode

As described in Section 2.2.3, each ActiveStart-SP8 Mode Sync Code is eight L-bit Words long and identically transmitted on each data Lane of every PHY. Similar to SP Mode, an ActiveStart-SP8 Sync Code may be detected using bits received from only a single data Lane within a given HiSPi PHY.

A HiSPi ActiveStart-SP8 Mode Transmitter using the default IDL Word of all 0-bits will never output an L-bit Word of all 0- or 1-bits during an active line except during an SOF or SOL Sync Code. In particular, as shown in Figure 11 on page 23, the maximum run length of consecutive 0- or 1-bits which can occur across Word boundaries in an AIL is 2*L - 2. This guarantees that an 8*L-bit sequence matching any of the default ActiveStart SP8 Sync Codes shown in Table 6 on page 15, with the exception of the default SOL Sync Code for the MT9E501, cannot occur during an Active Image Line because each of these Sync Codes contains a run of consecutive 0- or 1-bits longer than 2*L - 2. Therefore, these Sync Codes may be robustly detected at any time by observing a sequence of at least 2*L - 1 consecutive 1-bits.

However, there is no guarantee that an 8*L-bit sequence matching the MT9E501 default SOL Sync Code shown in Table 6 will never appear somewhere within an Active Image Line. This is illustrated by the example in Figure 16 on page 27, which shows how a false SOL Sync Code may appear in an AIL as a simple bit-wise shift of the 8*L-bit SOL Sync Code pattern. A solution to this problem is to employ a state machine to detect the specific SOL bit-pattern shown in Table 6, but to enable the state machine only when a Sync Code is expected. (Note that in the interest of uniformity, the same state machine may also be used to detect the MT9E501 SOF Sync Code, although it is not strictly necessary, as outlined in the previous paragraph.)

Aptina Confidential and Proprietary


Figure 16: Example Occurrence of False ActiveStart-SP8 Default SOL Sync Code for MT9E501

A	ILW	/ord	m	AIL Word m+1							AIL Word m+2					LV	Vor	AIL Word m+3					lm+	-4	AI	LW	/ord	m+	5	AI	LW	'ord	m+	-6	All	LW	ord	m+	7		
0		L ••	• 1			0	••	•	0	0	\mathbf{X}^{-}	1	•••	1	1	Χ	0	•••	0	0	Х	1	•••	1	1	Х	0	•••	0	0	Χ	1	•••	1	1	X	0	•••	0	0	K
	L	L-	1	1		L	L-	1			1		L-1					L-1					L-1					L-1					L-1					L-1		_	

An ActiveStart-SP8 Sync Code always occurs at the conclusion of an IDL, so MT9E501 Sync Code detection should be enabled whenever it can be reliably determined that an IDL Word sequence is in-progress. Assuming an IDL consists of at least two Words, a default IDL Word sequence may, in turn, be detected by observing at least 2*L - 1 consecutive 0-bits (that is, one more than the 2*L - 2 consecutive 0-bits, which may occur across Word boundaries in an AIL).

Figure 17 presents another example of legal SOL and SOF Sync Codes requiring special consideration during detection. The SOF and SOL Sync Codes are, respectively, $\{2^{L}-1, 0, 2^{L}-1, 0, 2^{L}-1, 0, 0, 0\}$ and $\{0, 2^{L}-1, 0, 2^{L}-1, 0, 0\}$. These Sync Codes are distinguished in that the first Word of the SOL Sync Code matches the default IDL Word, and the last seven Words of the SOL Sync Code match the first seven Words of the SOF Sync Code (that is, SOL and SOF "overlap"). The 10-Word sequence shown in Figure 17 depicts an IDL Period followed by the SOF Sync Code; however, this sequence could also be confused with an IDL Period followed by the SOL Sync Code if Word 10 is not also examined and found to consist of all 0-bits, the latter implying that Word 10 cannot be the first Word of the AIL and, therefore, the SOL Sync Code cannot be present.

Figure 17: Example of Overlapping ActiveStart-SP8 SOF and SOL Sync Codes

For proper Sync Code detection, the general rule underlying this example is that if Words 1 through m (for $m \le 7$) of an SOF or SOL Sync Code match the IDL Word, and, furthermore, the remaining Words m+1 through 8 of that Sync Code match Words 1 through 8-m of the other Sync Code, then the former 8-Word, SOF or SOL Sync Code must be detected by observing a total of nine Words in order to guarantee that the ninth Word is not really Word 8-m+1 of the other Sync Code.

Revision History

Rev. B	
	Updated 1.4.1 "Packetized-SP Mode Syntax" on page 6
	• Updated 1.4.2.1 "Active-before-Blanking Submode" on page 7
	Updated 1.4.3 "ActiveStart-SP8 Mode Syntax" on page 11
Rev. A	
	Initial release

10 Eunos Road 8 13-40, Singapore Post Center, Singapore 408600 prodmktg@aptina.com www.aptina.com Aptina, Aptina Imaging, and the Aptina logo are the property of Aptina Imaging Corporation All other trademarks are the property of their respective owners.