

## MT9V034 Register Reference

For more information, refer to the data sheet on Aptina's Web site: www.aptina.com

# MT9V034 Register Reference



#### **Table of Contents**

| Introduction            | Ł |
|-------------------------|---|
| How to Access Registers | ŀ |
| Reserved Registers.     | ł |
| Bad Frames              | ł |
| Registers               | ; |
| Shadowed Registers      | ) |
| Revision History        | L |



#### List of Tables

| Table 1: | Register List         | .5 |
|----------|-----------------------|----|
| Table 2: | Register Descriptions | .9 |



## Introduction

This reference document describes the MT9V034 registers and variables. Summary and detailed information are presented in separate sections:

- Table 1, "Register List," on page 5
  - Table 2, "Register Descriptions," on page 9
- **Note:** Throughout this document, Green1 to corresponds to greenB; green2 corresponds to greenB.

#### **How to Access Registers**

All the registers can be accessed by the two-wire serial interface with 16-bit addresses and 16-bit data.

For more detailed information on the interface protocol of the two-wire serial interface, see the MT9V034 data sheet.

## **Reserved Registers**

All the reserved bits should not be changed. The user must write the original values back when changing the registers.

## **Bad Frames**

A bad frame is a frame where all rows do not have the same integration time or where offsets to the pixel values have changed during the frame. Many changes to the sensor register settings can cause a bad frame. For example, when line\_length\_pck (R0x0342–3) is changed, the new register value does not affect sensor behavior until the next frame start. However, the frame that would be read out at that frame start will have been integrated using the old row width, so reading it out using the new row width would result in a frame with an incorrect integration time.

By default, bad frames are not masked. In the register tables, the "Bad Frame" column shows where changing a register or register field will cause a bad frame. This notation is used:

N—No. Changing the register value will not produce a bad frame.

Y—Yes. Changing the register value might produce a bad frame.

YM—Yes; but the bad frame will be masked out when mask\_corrupted\_frames (R0x0105) is set to "1."



## Registers

Caution Writing and changing the value of a reserved register (word or bit) puts the device in an unknown state and may damage the device.

#### Table 1: Register List

1 = always 1; 0 = always 0; d = programmable; ? = read only

| Register Number<br>(Hex) | Description                          | Data Format<br>(Binary)   | Default Value<br>(Hex) |
|--------------------------|--------------------------------------|---------------------------|------------------------|
| 0x00                     | Chip Version                         | 0001 0011 0010 0100 (LSB) | lter. 1: 0x1324        |
| 0x01                     | Column Start                         | 0000 00dd dddd dddd       | 0x0001                 |
| 0x02                     | Row Start Context A                  | 0000 000d dddd dddd       | 0x0004                 |
| 0x03                     | Window Height Context A              | 0000 000d dddd dddd       | 0x01E0                 |
| 0x04                     | Window Width Context A               | 0000 00dd dddd dddd       | 0x02F0                 |
| 0x05                     | Horizontal Blanking Context A        | 0000 00dd dddd dddd       | 0x005E                 |
| 0x06                     | Vertical Blanking Context A          | 0ddd dddd dddd            | 0x002D                 |
| 0x07                     | Chip Control                         | 0000 dddd dddd            | 0x0388                 |
| 0x08                     | Coarse Shutter Width 1 Context A     | 0ddd dddd dddd            | 0x01BB                 |
| 0x09                     | Coarse Shutter Width 2 Context A     | 0ddd dddd dddd            | 0x01D9                 |
| 0x0A                     | Shutter Width Ctrl Context A         | 0000 00dd dddd dddd       | 0x0164                 |
| 0x0B                     | Coarse Total Shutter Width Context A | 0ddd dddd dddd            | 0x01E0                 |
| 0x0C                     | Reset                                | 0000 0000 000d            | 0x0000                 |
| 0x0D                     | Read Mode Context A                  | 0000 0011 dddd dddd       | 0x0300                 |
| 0x0E                     | Read Mode Context B                  | 0000 0000 00dd dddd       | 0x0000                 |
| 0x0F                     | Sensor Type, HDR Enable              | bb00 0000 b000 0000       | 0x0100                 |
| 0x10                     | Reserved                             | -                         | 0x0040                 |
| 0x11                     | Reserved                             | -                         | 0x8042                 |
| 0x12                     | Reserved                             | _                         | 0x0022                 |
| 0x13                     | Reserved                             | -                         | 0x2D32                 |
| 0x14                     | Reserved                             | _                         | 0x0E02                 |
| 0x15                     | Reserved                             | _                         | 0x0E32                 |
| 0x16                     | Reserved                             | _                         | 0x2802                 |
| 0x17                     | Reserved                             | -                         | 0x3E38                 |
| 0x18                     | Reserved                             | _                         | 0x3E38                 |
| 0x19                     | Reserved                             | -                         | 0x2802                 |
| 0x1A                     | Reserved                             | _                         | 0x0428                 |
| 0x1B                     | LED_OUT Ctrl                         | bbo0 0000 0000 0000       | 0x0000                 |
| 0x1C                     | Companding                           | 0000 0000 bb00 0000       | 0x0302                 |
| 0x1D                     | Reserved                             | -                         | 0x0040                 |
| 0x1E                     | Reserved                             | _                         | 0x0000                 |
| 0x1F                     | Reserved                             | -                         | 0x0000                 |
| 0x20                     | Reserved                             | -                         | 0x01C1                 |
| 0x21                     | Reserved                             | -                         | 0x0020                 |
| 0x22                     | Reserved                             | _                         | 0x0020                 |
| 0x23                     | Reserved                             | _                         | 0x0010                 |
| 0x24                     | Reserved                             | _                         | 0x0010                 |
| 0x25                     | Reserved                             | -                         | 0x0020                 |
| 0x26                     | Reserved                             | _                         | 0x0004                 |



#### Table 1:

**Register List (continued)** 1 = always 1; 0 = always 0; d = programmable; ? = read only

| Register Number<br>(Hex) | Description                   | Data Format<br>(Binary)  | Default Value<br>(Hex) |
|--------------------------|-------------------------------|--------------------------|------------------------|
| 0x27                     | Reserved                      | -                        | 0x000C                 |
| 0x28                     | Reserved                      | -                        | 0x0010                 |
| 0x29                     | Reserved                      | -                        | 0x0010                 |
| 0x2A                     | Reserved                      | -                        | 0x0020                 |
| 0x2B                     | Reserved                      | -                        | 0x0004                 |
| 0x2C                     | VREF_ADC Control              | bbb0 0000 0000 0000 bbb0 | 0x0004                 |
| 0x2D                     | Reserved                      | -                        | 0x0004                 |
| 0x2E                     | Reserved                      | -                        | 0x0007                 |
| 0x2F                     | Reserved                      | -                        | 0x0004                 |
| 0x30                     | Reserved                      | -                        | 0x0003                 |
| 0x31                     | V1 Context A                  | 0000 0000 dddd           | 0x0027                 |
| 0x32                     | V2 Context A                  | bbb b000 0000 0000 bbbb  | 0x001A                 |
| 0x33                     | V3 Context A                  | 0000 0000 dddd           | 0x0005                 |
| 0x34                     | V4 Context A                  | bbb b000 0000 0000 bbbb  | 0x0003                 |
| 0x35                     | Analog Gain Context A         | 0000 0000 0ddd dddd      | 0x0010                 |
| 0x36                     | Analog Gain Context B         | 0000 0000 dddd           | 0x8010                 |
| 0x37                     | Reserved                      | _                        | 0x0000                 |
| 0x38                     | Reserved                      | _                        | 0x0000                 |
| 0x39                     | V1 Control Context B          | 0000 0000 dddd           | 0x27                   |
| 0x3A                     | V2 Control Context B          | 0000 0000 00dd dddd      | 0x26                   |
| 0x3B                     | V3 Control Context B          | 0000 0000 00dd dddd      | 0x5                    |
| 0x3C                     | V4 Control Context B          | 0000 0000 dddd           | 0x3                    |
| 0x40                     | Reserved                      | 0000 0000 ???? ????      | RO                     |
| 0x42                     | Frame Dark Average            | 0000 0000 ???? ????      | RO                     |
| 0x46                     | Dark Avg Thresholds           | dddd dddd dddd           | 0x231D                 |
| 0x47                     | BL Calib Control              | 1000 0000 ddd0 000d      | 0x0080                 |
| 0x48                     | Black Level Calibration Value | 0000 0000 dddd dddd      | 0x0000                 |
| 0x4C                     | BL Calib Step Size            | bbbb b000 0000 0000      | 0x0002                 |
| 0x60                     | Reserved                      | 0000 0000 0000 0000      | 0x0000                 |
| 0x61-0x66                | Unused                        | _                        | 0x0000                 |
| 0x67                     | Reserved                      | _                        | 0x0000                 |
| 0x68                     | Reserved                      | _                        | RO                     |
| 0x69                     | Reserved                      | _                        | RO                     |
| 0x6A                     | Reserved                      | _                        | RO                     |
| 0x6B                     | Reserved                      | _                        | RO                     |
| 0x6C                     | Reserved                      | _                        | 0x0000                 |
| 0x70                     | Row Noise Corr Control        | 0000 0000 bb00 0000      | 0x0000                 |
| 0x71                     | Row Noise Constant            | 0000 00dd dddd dddd      | 0x002A                 |
| 0x72                     | Pixclk, FV, LV Ctrl           | 0000 0000 dddd           | 0x0000                 |
| 0x73-0x7E                | Unused                        | _                        | 0x0000                 |
| 0x7F                     | Digital Test Pattern          | Oddd ddd dddd dddd       | 0x0000                 |
| 0x80                     | Tile Weight/Gain X0 Y0        | 0000 dddd dddd dddd      | 0x04F4                 |
| 0x81                     | Tile Weight/Gain X1_Y0        | 0000 dddd dddd dddd      | 0x04F4                 |
| 0x82                     | Tile Weight/Gain X2_Y0        | 0000 dddd dddd dddd      | 0x04F4                 |



#### Table 1:

**Register List (continued)** 1 = always 1; 0 = always 0; d = programmable; ? = read only

| Register Number<br>(Hex) | Description              | Data Format<br>(Binary) | Default Value<br>(Hex) |
|--------------------------|--------------------------|-------------------------|------------------------|
| 0x83                     | Tile Weight/Gain X3_Y0   | 0000 dddd dddd          | 0x04F4                 |
| 0x84                     | Tile Weight/Gain X4_Y0   | 0000 dddd dddd          | 0x04F4                 |
| 0x85                     | Tile Weight/Gain X0_Y1   | 0000 dddd dddd          | 0x04F4                 |
| 0x86                     | Tile Weight/Gain X1_Y1   | 0000 dddd dddd          | 0x04F4                 |
| 0x87                     | Tile Weight/Gain X2_Y1   | 0000 dddd dddd dddd     | 0x04F4                 |
| 0x88                     | Tile Weight/Gain X3_Y1   | 0000 dddd dddd dddd     | 0x04F4                 |
| 0x89                     | Tile Weight/Gain X4_Y1   | 0000 dddd dddd          | 0x04F4                 |
| 0x8A                     | Tile Weight/Gain X0_Y2   | 0000 dddd dddd dddd     | 0x04F4                 |
| 0x8B                     | Tile Weight/Gain X1_Y2   | 0000 dddd dddd dddd     | 0x04F4                 |
| 0x8C                     | Tile Weight/Gain X2_Y2   | 0000 dddd dddd          | 0x04F4                 |
| 0x8D                     | Tile Weight/Gain X3_Y2   | 0000 dddd dddd dddd     | 0x04F4                 |
| 0x8E                     | Tile Weight/Gain X4_Y2   | 0000 dddd dddd dddd     | 0x04F4                 |
| 0x8F                     | Tile Weight/Gain X0_Y3   | 0000 dddd dddd dddd     | 0x04F4                 |
| 0x90                     | Tile Weight/Gain X1_Y3   | 0000 dddd dddd dddd     | 0x04F4                 |
| 0x91                     | Tile Weight/Gain X2_Y3   | 0000 dddd dddd dddd     | 0x04F4                 |
| 0x92                     | Tile Weight/Gain X3_Y3   | 0000 dddd dddd dddd     | 0x04F4                 |
| 0x93                     | Tile Weight/Gain X4_Y3   | 0000 dddd dddd dddd     | 0x04F4                 |
| 0x94                     | Tile Weight/Gain X0_Y4   | 0000 dddd dddd dddd     | 0x04F4                 |
| 0x95                     |                          | 0000 dddd dddd dddd     | 0x04F4                 |
| 0x96                     | Tile Weight/Gain X2 Y4   | 0000 ddddddd dddd       | 0x04F4                 |
| 0x97                     | Tile Weight/Gain X3 Y4   | 0000 dddd dddd dddd     | 0x04F4                 |
| 0x98                     | Tile Weight/Gain X4_Y4   | 0000 dddd dddd dddd     | 0x04F4                 |
| 0x99                     | Tile Coord. X 0/5        | 0000 00dd dddd dddd     | 0x0000                 |
| 0x9A                     | Tile Coord. X 1/5        | 0000 00dd dddd dddd     | 0x0096                 |
| 0x9B                     | Tile Coord. X 2/5        | 0000 00dd dddd dddd     | 0x012C                 |
| 0x9C                     | Tile Coord. X 3/5        | 0000 00dd dddd dddd     | 0x01C2                 |
| 0x9D                     | Tile Coord. X 4/5        | 0000 00dd dddd dddd     | 0x0258                 |
| 0x9E                     | Tile Coord. X 5/5        | bbbb bb00 0000          | 0x02F0                 |
| 0x9F                     | Tile Coord. Y 0/5        | 0000 000d dddd dddd     | 0x0000                 |
| 0xA0                     | Tile Coord. Y 1/5        | 0000 000d dddd dddd     | 0x0060                 |
| 0xA1                     | Tile Coord. Y 2/5        | bbbb bbbb b000 0000     | 0x00C0                 |
| 0xA2                     | Tile Coord. Y 3/5        | bbbb bbbb b000 0000     | 0x0120                 |
| 0xA3                     | Tile Coord. Y 4/5        | 0000 000d dddd dddd     | 0x0180                 |
| 0xA4                     | Tile Coord. Y 5/5        | bbbb bbbb b000 0000     | 0x01E0                 |
| 0XA5                     | AEC/AGC Desired Bin      | 0000 0000 00dd dddd     | 0x003A                 |
| 0xA6                     | AEC Update Frequency     | 0000 0000 0000 dddd     | 0x0002                 |
| 0xA7                     | Unused                   | 0000 0000 0000 0000     | 0x0000                 |
| 0xA8                     | AEC LPF                  | bb00 0000 0000 000d     | 0x0000                 |
| 0xA9                     | AGC Update Frequency     | bbbb 0000 0000 0000     | 0x0002                 |
| 0xAA                     | AGC LPF                  | bb00 0000 0000 0000     | 0x0002                 |
| 0xAB                     | Max Analog Gain          | 0000 0000 0ddd dddd     | 0x0040                 |
| 0xAC                     | AEC MInimum Exposure     | dddd dddd dddd          | 0x0001                 |
| 0xAD                     | AEC Maximum Exposure     | dddd dddd dddd          | 0x01E0                 |
| 0xAE                     | Bin Difference Threshold | 0000 0000 dddd dddd     | 0x0014                 |



#### Table 1:

**Register List (continued)** 1 = always 1; 0 = always 0; d = programmable; ? = read only

| Register Number<br>(Hex) | Description                          | Data Format<br>(Binary) | Default Value<br>(Hex) |
|--------------------------|--------------------------------------|-------------------------|------------------------|
| 0xAF                     | AEC/AGC Enable A/B                   | 0000 0000 bb00 0000     | 0x0003                 |
| 0xB0                     | AEC/AGC Pix Count                    | dddd dddd dddd          | 0xABE0                 |
| 0xB1                     | LVDS Master Ctrl                     | 0000 0000 dddd          | 0x0002                 |
| 0xB2                     | LVDS Shift Clk Ctrl                  | 0000 0000 0000 0ddd     | 0x0010                 |
| 0xB3                     | LVDS Data Ctrl                       | 0000 0000 0000 0ddd     | 0x0010                 |
| 0xB4                     | Data Stream Latency                  | 0000 0000 0000 0000     | 0x0000                 |
| 0xB5                     | LVDS Internal Sync                   | p000 0000 0000 0000     | 0x0000                 |
| 0xB6                     | LVDS Payload Control                 | p000 0000 0000 0000     | 0x0000                 |
| 0xB7                     | Stereoscop. Error Ctrl               | 0000 0000 0000 0ddd     | 0x0000                 |
| 0xB8                     | Stereoscop. Error Flag               | 0000 0000 0000 000?     | RO                     |
| 0xB9                     | LVDS Data Output                     | יייי יייי יייי          | RO                     |
| 0xBA                     | AGC Gain Output                      | 0000 0000 0??? ????     | RO                     |
| OXBB                     | AEC Gain Output                      | יייי יייי יייי          | RO                     |
| 0xBC                     | AGC/AEC Current Bin                  | 0000 0000 00?? ????     | RO                     |
| 0xBD – 0xBE              | Reserved                             | 0000 0000 0000 0000     | 0x0000                 |
| 0xBF                     | Interlace Field Blank                | 0000 000d dddd dddd     | 0x0016                 |
| 0xC0                     | Mon Mode Capture Ctrl                | 0000 0000 dddd dddd     | 0x000A                 |
| 0xC1                     | Reserved                             | 0000 00?? ???? ????     | RO                     |
| 0xC2                     | Anti-eclipse Controls                | 00dd d000 d100 0000     | 0x0840                 |
| 0xC3                     | Reserved                             | 0000 000? ???? ????     | 0x007F                 |
| 0xC4                     | Reserved                             | 0000 0000 ???? ????     | 0x007F                 |
| 0xC5                     | Reserved                             | 0000 0000 ???? ????     | 0x007F                 |
| 0xC6                     | NTSV FV and LV Control               | 0000 0000 0000 0000     | 0x0                    |
| 0xC7                     | NTSC Horiz Blank Ctrl                | dddd dddd dddd          | 0x4416                 |
| 0xC8                     | NTSC Vert Blank Ctrl                 | dddd dddd dddd          | 0x4421                 |
| 0xC9                     | Column Start Context B               | 0000 00dd dddd dddd     | 0x001                  |
| 0xCA                     | Row Start Context B                  | 0000 000d dddd dddd     | 0x004                  |
| 0xCB                     | Window Height Context B              | 0000 000d dddd dddd     | 0x1E0                  |
| 0xCC                     | Window Width Context B               | 0000 00dd dddd dddd     | 0x2F0                  |
| 0xCD                     | Horizontal Blanking Context B        | 0000 00dd dddd dddd     | 0x5E                   |
| 0xCE                     | Vertical Blanking Context B          | Oddd dddd dddd dddd     | 0x2D                   |
| 0xCF                     | Coarse SW1 Context B                 | Oddd dddd dddd dddd     | 0x1DE                  |
| 0xD0                     | Coarse SW2 Context B                 | Oddd dddd dddd dddd     | 0x1DF                  |
| 0xD1                     | Shutter Width Ctrl Context B         | 0000 00dd dddd dddd     | 0x064                  |
| 0xD2                     | Coarse Shutter Width Total Context B | Oddd dddd dddd dddd     | 0x1E0                  |
| 0xD3                     | Fine SW1 Context A                   | 0000 00dd dddd dddd     | 0x0000                 |
| 0xD4                     | Fine SW2 Context A                   | 0000 00dd dddd dddd     | 0x0000                 |
| 0xD5                     | Fine Shutter Width Total Context A   | 0000 0ddd dddd dddd     | 0x0000                 |
| 0xD6                     | Fine SW1 Context B                   | 0000 Oddd dddd dddd     | 0x0000                 |
| 0xD7                     | Fine SW2 Context B                   | 0000 Oddd dddd dddd     | 0x0000                 |
| 0xD8                     | Fine Shutter Width Total Context B   | 0000 0ddd dddd dddd     | 0x0000                 |
| 0xD9                     | Monitor Mode                         | b000 0000 0000 0000     | 0x0000                 |
| 0xF0                     | Bytewise Addr                        | 0000 0000 dddd dddd     | 0x0000                 |
| 0xFE                     | Register Lock                        | dddd dddd dddd          | OxBEEF                 |



#### **Shadowed Registers**

Some sensor settings cannot be changed during frame readout. For example, changing window width R0x04 part way through frame readout results in inconsistent LV behavior. To avoid this, the MT9V034 double-buffers many registers by implementing a "pending" and a "live" version. Two-wire serial interface READs and WRITEs access the pending register. The live register controls the sensor operation. The value in the pending register is transferred to a live register at a fixed point in the frame timing, called "frame-start." Frame-start is defined as the point at which the first dark row is read out. By default, this occurs four row times before FRAME\_VALID (FV) goes HIGH. To determine which registers or register fields are double-buffered in this way, see the "Shadowed" column in Table 2.

Notation used in the register description table:

- Shadowed
  - N = No. The register value is updated and used immediately.

Y = Yes. The register value is updated at next frame start. Frame start is defined as when the first dark row is read out. By default this is four rows before FV goes HIGH.

• Read/Write

R = Read-only register/bit.

W = Read/Write register/bit.

Table 2 provides a detailed description of the registers. Bit fields that are not identified in the table are read only.

#### Table 2:Register Descriptions

| Bit     | Bit Name             | Bit Description                                                                                                                                                                                                                                                | Default in<br>Hex (Dec) | Shadowed | Legal<br>Values<br>(Dec) | Read/<br>Write |
|---------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|--------------------------|----------------|
| 0x00/0  | xFF (0/255) Chip Ver | sion                                                                                                                                                                                                                                                           |                         |          |                          |                |
| 15:0    | Chip Version         | Chip version—read-only                                                                                                                                                                                                                                         | 0x1324<br>(4900)        |          |                          | R              |
| 0x01 (1 | ) Column Start Cont  | ext A                                                                                                                                                                                                                                                          |                         |          |                          |                |
| 9:0     | Column Start         | The first column to be read out (not counting dark<br>columns that may be read). To window the image<br>down, set this register to the starting X value.<br>Readable/active columns are 1–752.                                                                 | 001<br>(1)              | Y        | 1–752                    | W              |
| 0x02 (2 | ) Row Start Context  | A                                                                                                                                                                                                                                                              |                         |          |                          |                |
| 8:0     | Row Start            | The first row to be read out (not counting any dark rows<br>that may be read). To window the image down, set this<br>register to the starting Y value.<br>Setting a value less than four is not recommended since<br>the dark rows should be read using R0x0D. | 004<br>(4)              | Ν        | 4–482                    | W              |
| 0x03 (3 | ) Window Height Co   | ntext A                                                                                                                                                                                                                                                        |                         |          |                          |                |
| 8:0     | Window Height        | Number of rows in the image to be read out (not counting any dark rows or border rows that may be read).                                                                                                                                                       | 1E0<br>(480)            | Y        | 1–480                    | W              |
| 0x04 (4 | ) Window Width Co    | ntext A                                                                                                                                                                                                                                                        |                         |          |                          |                |
| 9:0     | Window Width         | Number of columns in image to be read out (not<br>counting any dark columns or border columns that may<br>be read).                                                                                                                                            | 2F0<br>(752)            | Ν        | 1–752                    | W              |
| 0x05 (5 | ) Horizontal Blankin | g Context A                                                                                                                                                                                                                                                    |                         |          |                          |                |



| Bit     | Bit Name                                     | Bit Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Default in<br>Hex (Dec) | Shadowed | Legal<br>Values<br>(Dec) | Read/<br>Write |
|---------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|--------------------------|----------------|
| 9:0     | Horizontal<br>Blanking                       | Number of blank columns in a row.<br>Minimum horizontal blanking is 61 for normal mode, 71<br>for column bin 2 mode, and 91 for column bin 4 mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 05E<br>(94)             | Y        | 61–1023                  | W              |
| 0x06 (6 | ) Vertical Blanking C                        | ontext A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |          |                          |                |
| 14:0    | Vertical Blank                               | Number of blank rows in a frame. V-Blank value must<br>meet the following minimums:<br>Linear Mode:<br>V-Blank (min) = (SW_total - SW1 + 7)<br>= SW_total - R0x08 + 7<br>If manual exposure, then SW_total = R0x0B.<br>If auto-exposure mode then SW_total = R0xAD.<br>High Dynamic Range Mode:<br>If Auto-Knee Point disabled, then above equations<br>apply. If Auto-Knee Point enabled, then<br>V-Blank (min) = (t2 + t3 + 7).<br>Notes:<br>1.Calculate t2 and t3 taking into account Auto-Exposure<br>setting.<br>2.When Sequential Mode is enabled, this register is<br>ineffective. Vertical black = exposure to conver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 002D<br>(45)            | Ν        | 2–32288                  | W              |
| 0x07 (7 | ) Chip Control                               | incrective. Vertical blank – exposure + 0 tows.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |          |                          | L              |
| 2:0     | Scan Mode                                    | <ul> <li>0 = Progressive scan.</li> <li>1 = Not valid.</li> <li>2 = Two-field Interlaced scan. Even-numbered rows are read first, and followed by odd-numbered rows.</li> <li>3 = Single-field Interlaced scan. If the start address is an even number, only even-numbered rows are read out; if the start address is an odd number, only odd-numbered rows are read out. Effective image size is decreased by half.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                       | Y        | 0, 2, 3                  | W              |
| 4–3     | Sensor Operating<br>Mode<br>Stereoscopy Mode | <ul> <li>0 = Slave mode. The user is allowed to initiate exposure and readout.</li> <li>1 = Master mode. Sensor generates its own exposure and readout timing according to simultaneous/ sequential mode control bit.</li> <li>2 = Invalid mode.</li> <li>3 = Snapshot mode. The user triggers the start of frame by providing a pulse at EXPOSURE pin.</li> <li>0 = Stereoscopy disabled. Sensor is stand-alone and the start of the</li></ul> | 1                       | Y        | 0,1, 3                   | w              |
|         |                                              | PLL generates a 320 MHz (x12) clock. Typical maximum<br>cable length is 8 meters.<br>1 = Stereoscopy enabled. The PLL generates a 540 MHz<br>(x18) clock. Typical maximum cable length is 5 meters.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |          |                          |                |
| 6       | Stereoscopic<br>Master/Slave<br>mode         | 0 = Stereoscopic master.<br>1 = Stereoscopic slave. Stereoscopy mode should be<br>enabled when using this bit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                       | Ŷ        | 0,1                      | W              |



| Bit             | Bit Name                                          | Bit Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Default in<br>Hex (Dec) | Shadowed | Legal<br>Values<br>(Dec) | Read/<br>Write |
|-----------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|--------------------------|----------------|
| 7               | Parallel Output<br>Enable                         | 0 = Disables parallel output, LV and FV. DOUT[9:0],<br>FRAME_VALID, and LINE_VALID are forced to logic "0" in<br>sensor digital core. It does not control pads.<br>1= Enables parallel output.                                                                                                                                                                                                                                                                                                              | 1                       | Y        | 0,1                      | W              |
| 8               | Simultaneous/<br>Sequential Mode                  | 0 = Sequential mode. Pixel and column readout take<br>place only after exposure is complete.<br>1 = Simultaneous mode. Pixel and column readout take<br>place in conjunction with exposure.                                                                                                                                                                                                                                                                                                                 | 1                       | Y        | 0,1                      | W              |
| 9               | Defective Pixel<br>Correction Enable              | 0 = Disable Defective Pixel Correction feature.<br>1 = Enable Defective Pixel Correction feature.                                                                                                                                                                                                                                                                                                                                                                                                           | 1                       | Y        | 0, 1                     | W              |
| 15              | Context A/B<br>Select                             | 0 = Context A registers are used.<br>1 = Context B registers are used.                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                       | Y        | 0, 1                     | W              |
| 14:0            | Coarse Shutter Wid<br>Coarse Shutter<br>Width 1   | The row number in which the first knee occurs. This<br>may be used when high dynamic range is enabled<br>(R0x0F[0] = 1) and exposure knee point auto adjust is<br>disabled (R0x0A[8] = 0). This register is not shadowed,<br>but any change made does not take effect until the<br>following new frame.<br>This register's minimum value is 2, for either linear or<br>HDR modes.<br>Note:<br>t1 = Shutter width 1;<br>t2 = Shutter width 2 - Shutter width 1;<br>t3 = total integration - Shutter width 2. | 1BB<br>(443)            | Ν        | 0–32765                  | W              |
| 0x09 (9<br>14:0 | ) Coarse Shutter Wid<br>Course Shutter<br>Width 2 | The row number in which the second knee occurs.<br>This may be used only when high dynamic range is<br>enabled and exposure knee point auto adjust control bit<br>is disabled. This register is not shadowed, but any<br>change made does not take effect until the following<br>new frame.<br>Note:<br>t1 = Shutter width 1;<br>t2 = Shutter width 2 – Shutter 1;<br>t3 = Total integration – Shutter width 2.                                                                                             | 1D9<br>(473)            | Ν        | 0–32765                  | W              |
| 0x0A (1         | 0) Shutter Width Co                               | ntrol Context A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |          |                          |                |
| 3:0             | T2 Ratio                                          | When Exposure Knee Point Auto Adjust is enabled, then<br>one-half to the power of this value indicates the ratio of<br>duration time t2, when saturation control gate is<br>adjusted to level V2, to total coarse integration. This<br>register is not shadowed, but any change made does<br>not take effect until the following new frame.<br>T2 = Total coarse integration $\times$ (½) <sup>t2</sup> _ratio.                                                                                             | 4                       | Ν        | 0–15                     | W              |



| Bit          | Bit Name                                     | Bit Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Default in<br>Hex (Dec) | Shadowed | Legal<br>Values<br>(Dec) | Read/<br>Write |
|--------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|--------------------------|----------------|
| 7:4          | T3 Ratio                                     | When Exposure Knee Point Auto Adjust is enabled, then<br>one-half to the power of this value indicates the ratio of<br>duration time t3, when saturation control gate is<br>adjusted to level V3, to total coarse integration. This<br>register is not shadowed, but any change made does<br>not take effect until the following new frame.<br>t3 = Total integration × ( $\chi$ ) <sup>t3_ratio</sup> .<br>Note: t <sub>3</sub> = Total integration - t <sub>2</sub> - t <sub>1</sub> .                                             | 6                       | Ν        | 0–15                     | W              |
| 8            | Exposure Knee<br>Point Auto Adjust<br>Enable | 0 = Auto adjust disabled.<br>1 = Auto adjust enabled.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                       | Ν        | 0,1                      | W              |
| 9<br>0x0B (1 | Single Knee<br>Enable<br>1) Coarse Shutter W | 0 = Single knee disabled.<br>1 = Single knee enabled.<br>idth Total Context Δ                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                       | N        | 0,1                      | W              |
| 14:0         | Coarse Shutter<br>Width Total                | Total integration time in number of rows. This value is<br>used only when AEC is disabled only (bit 0 of R0xAF).<br>This register is not shadowed, but any change made<br>does not take effect until the following new frame.                                                                                                                                                                                                                                                                                                        | 1E0<br>(480)            | Ν        | 0–32765                  | W              |
| 0x0C (1      | .2) Reset                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |          |                          |                |
| 0            | Soft Reset                                   | Setting this bit will cause the sensor to abandon the<br>current frame by resetting all digital logic except two-<br>wire serial interface configuration. This is a self-<br>resetting register bit and should always read "0." (This<br>bit de-asserts internal active LOW reset signal for 15<br>clock cycles.)                                                                                                                                                                                                                    | 0                       | Ζ        | 0, 1                     | W              |
| 1            | Auto Block Soft<br>Reset                     | Setting this bit causes the sensor to reset the automatic<br>gain and exposure control logic. This is a self-resetting<br>register bit and should always read "0." (This bit de-<br>asserts internal active LOW reset signal for 15 clock<br>cycles.)                                                                                                                                                                                                                                                                                | 0                       | Y        | 0, 1                     | W              |
| 0x0D (1      | L3) Read Mode Conte                          | ext A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |                          |                |
| 1:0          | Row Bin                                      | <ul> <li>0 = Normal operation.</li> <li>1 = Row bin 2. Two pixel rows are read per row output.</li> <li>Image size is effectively reduced by a factor of 2 vertically while data rate and pixel clock are not affected. Resulting frame rate is increased by 2.</li> <li>2 = Row bin 4. Four pixel rows are read per row output.</li> <li>Image size is effectively reduced by a factor of 4 vertically while data rate and pixel clock are not affected. Resulting frame rate is increased by 4.</li> <li>3 = Not valid.</li> </ul> | 0                       | Y        | 0, 1, 2                  | W              |



| Bit     | Bit Name             | Bit Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Default in<br>Hex (Dec) | Shadowed | Legal<br>Values<br>(Dec) | Read/<br>Write |
|---------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|--------------------------|----------------|
| 3:2     | Column Bin           | <ul> <li>0 = Normal operation.</li> <li>1 = Column bin 2. When set, image size is reduced by a factor of 2 horizontally. Frame rate is not affected but data rate and pixel clock are reduced by one-half that of master clock.</li> <li>2 = Column bin 4.</li> <li>When set, image size is reduced by a factor of 4 horizontally.</li> <li>Frame rate is not affected but data rate and pixel clock are reduced by one-fourth that of master clock.</li> <li>3 = Not valid.</li> </ul>   | 0                       | Y        | 0, 1, 2                  | W              |
| 4       | Row Flip             | Read out rows from bottom to top (upside down). When<br>set, row readout starts from row (Row Start + Window<br>Height) and continues down to (Row Start + 1). When<br>clear, readout starts at Row Start and continues to (Row<br>Start + Window Height – 1).<br>This ensures that the starting color is maintained. This<br>one pixel adjustment is always performed, for<br>monochrome or color versions.                                                                              | 0                       | Y        | 0, 1                     | W              |
| 5       | Column Flip          | Read out columns from right to left (mirrored). When<br>set, column readout starts from column (Col Start +<br>Window Width) and continues down to (Col Start + 1).<br>When clear, readout starts at Col Start and continues to<br>(Col Start + Window Width – 1).<br>This ensures that the starting color is maintained. This<br>one pixel adjustment is always performed, for<br>monochrome or color versions.                                                                          | 0                       | Y        | 0, 1                     | W              |
| 6       | Show Dark Rows       | When set, three dark rows are output before the active<br>window. Frame valid is thus asserted earlier than<br>normal. This has no effect on integration time or frame<br>rate. Whether the dark rows are shown in the image or<br>not the definition frame start is before the dark rows<br>are read out.                                                                                                                                                                                | 0                       | Y        | 0, 1                     | W              |
| 7       | Show Dark<br>Columns | When set, 36 dark columns are output before the active<br>pixels in a line. Line valid is thus asserted earlier than<br>normal, and the horizontal blank time is shortened by<br>36 pixel clocks.                                                                                                                                                                                                                                                                                         | 0                       | Y        | 0, 1                     | W              |
| 9:8     | Reserved             | Reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3                       |          | 3                        |                |
| 0x0E (1 | 4) Read Mode Conte   | xt B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |          |                          |                |
| 1:0     | KOM RIU              | <ul> <li>1 = Normal Operation</li> <li>1 = Row bin 2. Two pixel rows are read per row output.</li> <li>Image size is effectively reduced by a factor of 2 vertically while data rate and pixel clock are not affected. Resulting frame rate is increased by 2.</li> <li>2 = Row bin 4. Four pixel rows are read per row output.</li> <li>Image size is effectively reduced by a factor of 4 vertically w</li> <li>Resulting frame rate is increased by 4.</li> <li>3 = Invalid</li> </ul> | U                       | Ŷ        | U, I, 2                  | w              |



| Bit     | Bit Name                        | Bit Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Default in<br>Hex (Dec) | Shadowed | Legal<br>Values<br>(Dec) | Read/<br>Write |
|---------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|--------------------------|----------------|
| 0x0F (1 | 5) Sensor Type Conti            | rol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |          |                          |                |
| 0       | High Dynamic<br>Range Context A | 0 = Linear operation. If Linear mode is selected, then<br>Exposure Knee Point Auto Adjust must also be enabled<br>(R0x0A[8] = 1).<br>1 = High Dynamic Range. Voltage and shutter width<br>must be correctly set for saturation control to operate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                       | Ν        | 0, 1                     | W              |
| 1       | Color/Mono<br>Sensor Control    | This bit controls some color-specific logic in Black Level<br>Correction and Defective Pixel Correction.<br>0 = Monochrome<br>1 = Color<br>It should generally be left at "0" for all part types. It is<br>not required to be set for color sensors to operate<br>properly.<br>When set, it applies an unequal offset to the color<br>planes. For most applications on color parts the bit is<br>best left cleared (monochrome), especially for machine<br>vision applications where predictable image offsets are<br>required.<br>For Black Level Calibration (BLC), when this bit is set,<br>the sensor uses black level correction values from one<br>green plane, which are applied to all colors. Since this<br>bit applies offsets to the color plane, BLC results may be<br>affected.<br>For Defective Pixel Correction (DPC), this bit must be set<br>for the DPC algorithm to calculate replacement pixels<br>based on color plane, otherwise the DPC algorithm will<br>calculate replacement pixels based on nearest-neighbor<br>rather than nearest color-neighbor. | 0                       | Ŷ        | 0, 1                     | W              |
| 8       | High Dynamic<br>Range Context B | <ul> <li>0 = Linear operation. If Linear mode is selected, then</li> <li>Exposure Knee Point Auto Adjust must also be enabled</li> <li>(R0xD1[8] = 1).</li> <li>1 = High Dynamic Range. Voltage and shutter width</li> <li>must be correctly set for saturation control to operate.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                       | Ν        | 0, 1                     | W              |
| 0x1B(2  | 7) LED_OUT Control              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |                          | n              |
| 0       | Disable LED_OUT                 | Disable LED_OUT output.<br>When this bit is cleared, the output pin LED_OUT is<br>pulsed HIGH when the sensor is undergoing exposure.<br>When this bit is enabled: If enabled (set to 1), and Invert<br>LED_OUT is disabled, the output pin LED_OUT is held in<br>logic LOW state. If enabled and Invert LED_OUT is<br>enabled, output pin LED_OUT is held in a logic HIGH<br>state.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                       | Y        | 0,1                      | W              |
| 1       | Invert LED_OUT                  | Inverts polarity of LED_OUT output. When this bit is set, the output pin LED_OUT is pulsed LOW when the sensor is undergoing exposure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                       | Y        | 0,1                      | W              |
| 0x1C (2 | 8) ADC Companding               | Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |          |                          |                |
| 1:0     | ADC Mode<br>Context A           | 0 = Invalid.<br>1 = Invalid.<br>2 = 10-bit linear.<br>3 = 12-to10-bit companding.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                       | Ν        | 2, 3                     | W              |



| Bit     | Bit Name              | Bit Description                                              | Default in<br>Hex (Dec) | Shadowed      | Legal<br>Values<br>(Dec) | Read/<br>Write |
|---------|-----------------------|--------------------------------------------------------------|-------------------------|---------------|--------------------------|----------------|
| 9:8     | ADC Mode              | 0 = Invalid.                                                 | 3                       | N             | 2,3                      | W              |
|         | Context B             | 1 = Invalid.                                                 |                         |               |                          |                |
|         |                       | 2 = 10-bit linear.                                           |                         |               |                          |                |
|         |                       | 3 = 12-to10-bit companding.                                  |                         |               |                          |                |
| 0x2C (4 | 14) – 0x3C (60) Analo | g Controls                                                   |                         | c             |                          |                |
| Note: I | hese registers are no | ot shadowed, but any change made does not take effect ui     | ntil the followir       | ng new frame. |                          |                |
| 0x2C (4 | 4) VREF_ADC Contro    |                                                              | -                       |               |                          |                |
| 2:0     | VREF_ADC Voltage      | $0 = VREF_ADC = 1.0V.$                                       | 4                       | N             | 0–7                      | W              |
|         | Level                 | $1 = VREF_ADC = 1.1V.$                                       |                         |               |                          |                |
|         |                       | $2 = VREF_ADC = 1.2V.$                                       |                         |               |                          |                |
|         |                       | $3 = VREF_ADC = 1.3V.$                                       |                         |               |                          |                |
|         |                       | 4 = VREF_ADC = 1.4V. (Note: Effective ADC reference          |                         |               |                          |                |
|         |                       | Voltage is $1.0V$ .)                                         |                         |               |                          |                |
|         |                       | $S = VREF_ADC = 1.5V.$                                       |                         |               |                          |                |
|         |                       | $7 - \sqrt{pc}$ ADC - 2.1V                                   |                         |               |                          |                |
|         |                       | Range: 1.0-2.1V: Default: 1.4V                               |                         |               |                          |                |
|         |                       |                                                              |                         |               |                          |                |
|         |                       | Note: This register is not shadowed, but any change          |                         |               |                          |                |
|         |                       | made does not take effect until the following new            |                         |               |                          |                |
|         |                       | frame.                                                       |                         |               |                          |                |
| 0x31 (4 | 9) V1 Control Conte   | xt A                                                         |                         |               |                          | I              |
| 5:0     | ,<br>V1 voltage level | For bits (5:0) = 0 to 5.                                     | 27                      | N             | 0-63                     | W              |
|         |                       | V step = bits (5:0) * 200mV + 0.2V.                          | (39)                    |               |                          |                |
|         |                       | Range: 0.2 - 1.2V                                            | ()                      |               |                          |                |
|         |                       |                                                              |                         |               |                          |                |
|         |                       | For bits (5:0) = 6 to 63                                     |                         |               |                          |                |
|         |                       | V_step = bits (5:0) * 23.5mV + 1.62V                         |                         |               |                          |                |
|         |                       | Range: 1.76-3.1V                                             |                         |               |                          |                |
|         |                       | Note: Equation and range are determined with the             |                         |               |                          |                |
|         |                       | assumption that VAA = 3.3V. They may vary with actual        |                         |               |                          |                |
|         |                       | VAA voltage.                                                 |                         |               |                          |                |
|         |                       | Default: 2.54V                                               |                         |               |                          |                |
|         |                       | Usage: Vstep1 HDR voltage                                    |                         |               |                          |                |
| 0x32 (5 | 50) V2 Control Conte  | xt A                                                         |                         |               |                          | r              |
| 5:0     | V2 voltage level      | For bits (5:0) = 0 to 5,                                     | 1A                      | N             | 0–63                     | W              |
|         |                       | V_step = bits (5:0) * 200mV + 0.2V.                          | (26)                    |               |                          |                |
|         |                       | Range: 0.2 - 1.2V                                            |                         |               |                          |                |
|         |                       | $F_{or} hitr (F_{0}) = 6 to 62$                              |                         |               |                          |                |
|         |                       | (5.0) = 0.005                                                |                         |               |                          |                |
|         |                       | $v_{sicp} = 0its(3:0) = 23.31110 + 1.020$<br>Range 1 76-3 1/ |                         |               |                          |                |
|         |                       | Note: equation and range are determined with the             |                         |               |                          |                |
|         |                       | assumption that $V_{AA} = 3.3V$ They may vary with actual    |                         |               |                          |                |
|         |                       | Vas voltage                                                  |                         |               |                          |                |
|         |                       | Default: 2.23V                                               |                         |               |                          |                |
|         |                       | Usage: Vstep2 HDR voltage                                    |                         |               |                          |                |



| Bit                   | Bit Name                                                         | Bit Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Default in<br>Hex (Dec) | Shadowed | Legal<br>Values<br>(Dec) | Read/<br>Write |  |  |  |
|-----------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|--------------------------|----------------|--|--|--|
| 0x33 (5               | 0x33 (51) V3 Control Context A                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |          |                          |                |  |  |  |
| 5:0                   | V3 voltage level                                                 | For bits (5:0) = 0 to 5,<br>V_step = bits (5:0) * 200mV + 0.2V.<br>Range: 0.2 - 1.2V<br>For bits (5:0) = 6 to 63<br>V_step = bits (5:0) * 23.5mV + 1.62V<br>Range: 1.76-3.1V<br>Note: equation and range are determined with the<br>assumption that VAA = 3.3V. They may vary with actual<br>VAA voltage.<br>Default: 1.2V<br>Usage: Vstep3 HDR voltage.                                                                                                                                                              | 05<br>(5)               | Ν        | 0–63                     | W              |  |  |  |
| 0x34 (5               | 2) V4 Control Conte                                              | xt A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |          |                          |                |  |  |  |
| 5:0<br>0x35 (5<br>6:0 | V4 voltage level<br>3) Analog Gain Cont<br>Global Analog<br>Gain | For bits (5:0) = 0 to 5,<br>V_step = bits (5:0) * 200mV + 0.2V.<br>Range: 0.2 - 1.2V<br>For bits (5:0) = 6 to 63<br>V_step = bits (5:0) * 23.5mV + 1.62V<br>Range: 1.76-3.1V<br>Note: equation and range are determined with the<br>assumption that VAA = 3.3V. They may vary with actual<br>VAA voltage.<br>Default: 0.8V<br>Usage: Vstep HDR parking voltage, also provides anti-<br>blooming when Vstep is disabled.<br>ext A<br>Analog gain = bits (6:0) x 0.0625<br>Range: 16 dec - 64dec for 1X-4X respectively | 03<br>(3)<br>10<br>(16) | N        | 0-63                     | W              |  |  |  |
|                       |                                                                  | Column amplifier common gain.<br>Note: No exception detection is installed, user needs to                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |          |                          |                |  |  |  |
| 15                    | Global Analog<br>Gain Attenuation                                | When this bit is set, analog gain will be forced to 0.75X.                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                       | Ν        | 0, 1                     | W              |  |  |  |
| 0x36 (5               | 4) Analog Gain Cont                                              | ext B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                       |          |                          |                |  |  |  |
| 6:0                   | Global Analog<br>Gain                                            | Analog gain = bits (6:0) x 0.0625<br>Range: 16 dec -64dec for 1X-4X respectively<br>Column amplifier common gain.<br>Note: No exception detection is installed, user needs to<br>be cautious when programming.                                                                                                                                                                                                                                                                                                        | 10<br>(16)              | Ν        | 16–64                    | W              |  |  |  |
| 15                    | Global Analog<br>Gain Attenuation                                | When this bit is set, analog gain will be forced to 0.75X.                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                       | N        | 0, 1                     | W              |  |  |  |



| D:1     | Dit Norme                      | Dit Description                                                                                                                                                                                                                                                                                                                                                    | Default in | Chadawad | Legal<br>Values | Read/ |  |  |
|---------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|-----------------|-------|--|--|
| BIT     | Bit Name                       | Bit Description                                                                                                                                                                                                                                                                                                                                                    | Hex (Dec)  | Snadowed | (Dec)           | write |  |  |
| 0x39 (5 | UX39 (57) V1 CONTROL CONTEXT B |                                                                                                                                                                                                                                                                                                                                                                    |            |          |                 |       |  |  |
| 5:0     | V1 Voltage Level               | For bits (5:0) = 0 to 5,<br>V_step = bits (5:0) * 200mV + 0.2V.<br>Range: 0.2 - 1.2V                                                                                                                                                                                                                                                                               | 27<br>(39) | Ν        | 0–63            | W     |  |  |
|         |                                | For bits (5:0) = 6 to 63<br>V_step = bits (5:0) * 23.5mV + 1.62V<br>Range: 1.76-3.1V<br>Note: equation and range are determined with the<br>assumption that VAA= 3.3V. They may vary with actual<br>VAA voltage.<br>Default: 2.54V<br>Usage: Vstep 1 HDR voltage                                                                                                   |            |          |                 |       |  |  |
| 0x3A (5 | 58) V2 Control Conte           | kt B                                                                                                                                                                                                                                                                                                                                                               |            |          |                 |       |  |  |
| 5:0     | V2 Voltage Level               | For bits $(5:0) = 0$ to 5,<br>V_step = bits $(5:0) * 200$ mV + 0.2V.<br>Range: 0.2 - 1.2V<br>For bits $(5:0) = 6$ to 63<br>V_step = bits $(5:0) * 23.5$ mV + 1.62V<br>Range: 1.76-3.1V<br>Note: Equation and range are determined with the<br>assumption that VAA = 3.3V. They may vary with actual<br>VAA voltage.<br>Default: 2.51V<br>Usage: Vstep2 HDR voltage | 36<br>(38) | Ν        | 0–63            | W     |  |  |
| 0x3B (5 | 9) V3 Control Conte            | xt B                                                                                                                                                                                                                                                                                                                                                               |            |          |                 |       |  |  |
| 5:0     | V3 Voltage Level               | For bits $(5:0) = 0$ to 5,<br>V_step = bits $(5:0) * 200$ mV + 0.2V.<br>Range: 0.2 - 1.2V<br>For bits $(5:0) = 6$ to 63<br>V_step = bits $(5:0) * 23.5$ mV + 1.62V<br>Range: 1.76-3.1V                                                                                                                                                                             | 05<br>(5)  | Ν        | 0–63            | W     |  |  |
|         |                                | assumption that VAA= 3.3V. They may vary with actual<br>VAA voltage.<br>Default: 1.2V<br>Usage: Vstep3 HDR voltage                                                                                                                                                                                                                                                 |            |          |                 |       |  |  |
| 0x3C (6 | 0) V4 Control Conte            | xt B                                                                                                                                                                                                                                                                                                                                                               |            |          |                 |       |  |  |



| Bit     | Bit Name                          | Bit Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Default in<br>Hex (Dec) | Shadowed | Legal<br>Values<br>(Dec) | Read/<br>Write |
|---------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|--------------------------|----------------|
| 5:0     | V4 Voltage Level                  | For bits (5:0) = 0 to 5,<br>V_step = bits (5:0) * 200mV + 0.2V.<br>Range: 0.2 - 1.2V<br>For bits (5:0) = 6 to 63<br>V_step = bits (5:0) * 23.5mV + 1.62V<br>Range: 1.76-3.1V<br>Note: Equation and range are determined with the<br>assumption that VAA = 3.3V. They may vary with actual<br>VAA voltage.<br>Default: 0.8V<br>Usage: Vstep HDR parking voltage, also provides anti-<br>blooming when Vstep is disabled.                                                                                                                   | 03<br>(3)               | Ν        | 0–63                     | W              |
| 0x42 (6 | 6) Frame Dark Avera               | ge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                       | -        |                          | P              |
| 7:0     | Average                           | used in the black level algorithm calculations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | U                       |          |                          | ĸ              |
| 0x46 (7 | 0) Dark Average Thr               | esholds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |          |                          |                |
| 7:0     | Lower threshold                   | Lower threshold for targeted black level in ADC LSBs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1D<br>(29)              | N        | 0–255                    | W              |
| 15:8    | Upper threshold                   | Upper threshold for targeted black level in ADC LSBs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23<br>(35)              | Ν        | 0–255                    | W              |
| 0x47 (7 | 1) Black Level Calibr             | ation Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |          |                          |                |
| 0       | Manual Override                   | Manual override of black level correction.<br>1 = Override automatic black level correction with<br>programmed values. (R0x48).<br>0 = Normal operation (default).                                                                                                                                                                                                                                                                                                                                                                        | 0                       | Ν        | 0, 1                     | W              |
| 7:5     | Frames to average<br>over         | Two to the power of this value decide how many frames<br>to average over when the black level algorithm is in the<br>averaging mode. In this mode the running frame<br>average is calculated from the following formula:<br>Running frame ave = Old running frame ave - (old<br>running frame ave)/2n + (new frame ave)/2n.                                                                                                                                                                                                               | 4                       | Ν        | 0–7                      | W              |
| 0x48 (7 | 2) Black Level Calibr             | ation Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |          |                          |                |
| 7:0     | Black Level<br>Calibration Value  | Analog calibration offset: Negative numbers are<br>represented with two's complement, which is shown in<br>the following formula:<br>Sign = bit 7 (0 is positive, 1 is negative).<br>If positive offset value: Magnitude = bit 6:0.<br>If negative offset value: Magnitude = not (bit 6:0) + 1.<br>During two-wire serial interface read, this register<br>returns the user-programmed value when manual<br>override is enabled (R0x47 bit 0); otherwise, this<br>register returns the result obtained from the calibration<br>algorithm. | _                       | Ν        | –127 to 127              | RW             |
| 0x4C (7 | 6) Black Level Calibr             | ation Value Step Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |          |                          |                |
| 4:0     | Step Size of<br>Calibration Value | This is the size calibration value may change (positively<br>or negatively) from frame to frame.<br>Note: 1 calib LSB = ½ ADC LSB, assuming analog gain = 1.                                                                                                                                                                                                                                                                                                                                                                              | 02                      | N        | 0-31                     | W              |



| Bit     | Bit Name                                | Bit Description                                                                                                                                                                                                                                                                                                                                                                 | Default in<br>Hex (Dec) | Shadowed | Legal<br>Values<br>(Dec) | Read/<br>Write |  |  |  |
|---------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|--------------------------|----------------|--|--|--|
| 0x70 (1 | 0x70 (112) Row Noise Correction Control |                                                                                                                                                                                                                                                                                                                                                                                 |                         |          |                          |                |  |  |  |
| 0       | Enable Noise<br>Correction<br>Context A | 0 = Normal operation<br>1 = Enable row noise cancellation algorithm. When this<br>bit is set, on a per row basis, the dark average will be<br>subtracted from each pixel in the row, and then a<br>constant (Reg 0x71) will be added.                                                                                                                                           | 0                       | Z        | 0, 1                     | W              |  |  |  |
| 1       | Use black level<br>average Context A    | <ul> <li>0 = Use the average value of the dark columns read out<br/>in each row as dark average.</li> <li>1 = Use black level frame average from the dark rows in<br/>the row noise correction algorithm for low gains. Note<br/>that this frame average was taken before the last<br/>adjustment of the offset DAC for that frame, so it might<br/>be slightly off.</li> </ul> | 0                       | Ζ        | 0, 1                     | W              |  |  |  |
| 8       | Enable noise<br>correction<br>Context B | 0 = Normal operation<br>1 = Enable row noise cancellation algorithm. When this<br>bit is set, on a per row basis, the dark average will be<br>subtracted from each pixel in the row, and then a<br>constant (Reg 0x71) will be added.                                                                                                                                           | 0                       | Ν        | 0, 1                     | W              |  |  |  |
| 9       | Use black level<br>average Context B    | <ul> <li>0 = Use the average value of the dark columns read out<br/>in each row as dark average.</li> <li>1 = Use black level frame average from the dark rows in<br/>the row noise correction algorithm for low gains. Note<br/>that this frame average was taken before the last<br/>adjustment of the offset DAC for that frame, so it might<br/>be slightly off.</li> </ul> | 0                       | Ν        | 0, 1                     | W              |  |  |  |
| 0x71 (1 | 13) Row Noise Const                     | tant                                                                                                                                                                                                                                                                                                                                                                            |                         |          |                          |                |  |  |  |
| 9:0     | Row noise<br>constant                   | Constant used in the row noise cancellation algorithm.<br>It should be set to the dark level targeted by the black<br>level algorithm plus the noise expected between the<br>averaged values of dark columns. At default the<br>constant is set to 42 LSB.                                                                                                                      | 2A<br>(42)              | Y        | 0–1023                   | W              |  |  |  |
| 0x72 (1 | 14) Pixel Clock, FRAM                   | ME and LINE VALID Control                                                                                                                                                                                                                                                                                                                                                       |                         |          |                          | _              |  |  |  |
| 0       | Invert LINE VALID                       | Invert LINE_VALID. When set, LINE_VALID will be reset to logic "0" when PDOUT is valid.                                                                                                                                                                                                                                                                                         | 0                       | Y        | 0, 1                     | W              |  |  |  |
| 1       | Invert Frame Valid                      | Invert FRAME_VALID. When set, FRAME_VALID is reset to logic "0" when frame is valid.                                                                                                                                                                                                                                                                                            | 0                       | Y        | 0, 1                     | W              |  |  |  |
| 2       | XOR Line Valid                          | 1 = LINE_VALID = "Continuous" LINE_VALID XOR<br>FRAME_VALID<br>0 = LINE_VALID determined by bit 3. Ineffective if<br>Continuous Line Valid is set.                                                                                                                                                                                                                              | 0                       | Y        | 0, 1                     | W              |  |  |  |
| 3       | Continuous Line<br>Valid                | 1 = "Continuous" LINE_VALID (continue producing<br>LINE_VALID during vertical blank).<br>0 = Normal LINE_VALID (default, no LINE_VALID during<br>vertical blank).                                                                                                                                                                                                               | 0                       | Y        | 0, 1                     | W              |  |  |  |
| 4       | Invert Pixel Clock                      | Invert pixel clock. When set, LINE_VALID, FRAME_VALID,<br>and PDOUT will be set up to the rising edge of pixel clock,<br>PIXCLK. When clear, they are set up to the falling edge<br>of PIXCLK.                                                                                                                                                                                  | 0                       | Y        | 0, 1                     | W              |  |  |  |



| Bit                             | Bit Name                                       | Bit Description                                                                                                                                                                                                                                                                                                                                                               | Default in<br>Hex (Dec) | Shadowed | Legal<br>Values<br>(Dec) | Read/<br>Write |  |  |
|---------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|--------------------------|----------------|--|--|
| 0x7F (127) Digital Test Pattern |                                                |                                                                                                                                                                                                                                                                                                                                                                               |                         |          |                          |                |  |  |
| 9:0                             | Two-wire Serial<br>Interface Test<br>Data      | The 10-bit test data in this register is used in place of<br>the data from the sensor. The data is inserted at the<br>beginning of the digital signal processing. Both test<br>enable (bit 13) and use two-wire serial interface (bit 10)<br>must be set.                                                                                                                     | 000                     | Ν        | 0–1023                   | W              |  |  |
| 10                              | Use Two-wire<br>Serial Interface<br>Test Data  | 0 = Use Gray Shade Test Pattern as test data.<br>1 = Use Two-wire Serial Interface Test Data (bits 9:0) as<br>test data.                                                                                                                                                                                                                                                      | 0                       | Ν        | 0, 1                     | W              |  |  |
| 12:11                           | Gray Shade Test<br>Pattern                     | 0 = None.<br>1 = Vertical Shades.<br>2 = Horizontal Shades.<br>3 = Diagonal Shade.<br>When bits (12:11) ≠ 0, the MT9V034 generates a gray<br>shaded test pattern to be used as digital test data.<br>Ineffective when Use Two-wire Serial Interface Test<br>Data (bit 10) is set.                                                                                             | 0                       | Ν        | 0–3                      | W              |  |  |
| 13                              | Test Enable                                    | Enable the use of test data/gray-shaded test pattern in<br>the signal chain. The data will be inserted instead of<br>data from the ADCs.<br>When using this mode, disable Row Noise Correction<br>(R0x70 bit 0 and bit 8). If Row Noise Correction is<br>enabled, the row-wise correction algorithm will process<br>the test data values and the result will not be accurate. | 0                       | Y        | 0, 1                     | W              |  |  |
| 14                              | Flip Two-Wire<br>Serial Interface<br>Test Data | Use only when bit 10 is set. When set, the Two-Wire<br>Test Data (bits 9:0) will be used in place of the data<br>from ADC/memory on odd columns, while complement<br>of the same data will be used on even columns.                                                                                                                                                           | 0                       | Ν        | 0, 1                     | W              |  |  |
| 0x80 (1                         | 28) - 0x98 (152) Tile                          | d Digital Gain                                                                                                                                                                                                                                                                                                                                                                | 1                       |          |                          |                |  |  |
| 3:0                             | Tile Gain<br>Context A                         | Tile Digital Gain = Bits (3:0) * 0.25                                                                                                                                                                                                                                                                                                                                         | 4<br>(4)                | Y        | 1–15                     | W              |  |  |
| 7:4                             | Sample Weight                                  | To indicate the weight of individual tile used in the automatic gain/exposure control algorithm                                                                                                                                                                                                                                                                               | F<br>(15)               | Y        | 1–15                     | W              |  |  |
| 11:8                            | Tile Gain Context<br>B                         | Tile Digital Gain = Bits (3:0) * 0.25                                                                                                                                                                                                                                                                                                                                         | 4<br>(4)                | Y        | 1–15                     | W              |  |  |
| 0x99 (1                         | .53) – 0xA4 (164) Dig                          | gital Tile Coordinate                                                                                                                                                                                                                                                                                                                                                         |                         |          |                          |                |  |  |
| 0x99 (1                         | 53) Digital Tile Coor                          | dinate 1 - X-direction                                                                                                                                                                                                                                                                                                                                                        |                         |          |                          |                |  |  |
| 9:0                             | X <sub>0/5</sub>                               | The starting x-coordinate of digital tiles X0_*.                                                                                                                                                                                                                                                                                                                              | 000<br>(0)              | Ν        | 0–752                    | W              |  |  |
| 0x9A (1                         | .54) Digital Tile Coor                         | dinate 2 - X-direction                                                                                                                                                                                                                                                                                                                                                        |                         |          |                          |                |  |  |
| 9:0                             | X <sub>1/5</sub>                               | The starting x-coordinate of digital tiles X1_*.                                                                                                                                                                                                                                                                                                                              | 096<br>(150)            | Ν        | 0–752                    | W              |  |  |
| 0x9B (1                         | 55) Digital Tile Coor                          | dinate 3 - X-direction                                                                                                                                                                                                                                                                                                                                                        |                         |          |                          |                |  |  |
| 9:0                             | X <sub>2/5</sub>                               | The starting x-coordinate of digital tiles X2_*.                                                                                                                                                                                                                                                                                                                              | 12C<br>(300)            | Ν        | 0–752                    | W              |  |  |
| 0x9C (1                         | .56) Digital Tile Coor                         | dinate 4 - X-direction                                                                                                                                                                                                                                                                                                                                                        |                         |          |                          |                |  |  |
| 9:0                             | X <sub>3/5</sub>                               | The starting x-coordinate of digital tiles X3_*.                                                                                                                                                                                                                                                                                                                              | 1C2<br>(450)            | Ν        | 0–752                    | W              |  |  |



| Bit     | Bit Name                | Bit Description                                                                            | Default in<br>Hex (Dec) | Shadowed | Legal<br>Values<br>(Dec) | Read/<br>Write |
|---------|-------------------------|--------------------------------------------------------------------------------------------|-------------------------|----------|--------------------------|----------------|
| 0x9D (1 | L57) Digital Tile Coor  | dinate 5 - X-direction                                                                     |                         |          |                          |                |
| 9:0     | X <sub>4/5</sub>        | The starting x-coordinate of digital tiles X4_*.                                           | 258<br>(600)            | Ν        | 0–752                    | W              |
| 0x9E (1 | .58) Digital Tile Coord | dinate 6 - X-direction                                                                     |                         |          |                          |                |
| 9:0     | X <sub>5/5</sub>        | The ending x-coordinate of digital tiles X4_*.                                             | 2F0<br>(752)            | Ν        | 0–752                    | W              |
| 0x9F (1 | 59) Digital Tile Coord  | dinate 1 - Y-direction                                                                     |                         |          |                          |                |
| 8:0     | Y <sub>0/5</sub>        | The starting y-coordinate of digital tiles *_Y0.                                           | 000<br>(0)              | Ν        | 0–480                    | W              |
| 0xA0 (1 | 60) Digital Tile Coor   | dinate 2 - Y-direction                                                                     |                         |          |                          |                |
| 8:0     | Y <sub>1/5</sub>        | The starting y-coordinate of digital tiles *_Y1.                                           | 060<br>(96)             | Ν        | 0–480                    | W              |
| 0xA1 (1 | 61) Digital Tile Coor   | dinate 3 - Y-direction                                                                     |                         |          |                          |                |
| 8:0     | Y <sub>2/5</sub>        | The starting y-coordinate of digital tiles *_Y2.                                           | 0C0<br>(192)            | Ν        | 0–480                    | W              |
| 0xA2 (1 | 162) Digital Tile Coor  | dinate 4 - Y-direction                                                                     |                         |          |                          |                |
| 8:0     | Y <sub>3/5</sub>        | The starting y-coordinate of digital tiles *_Y3.                                           | 120<br>(288)            | Ν        | 0–480                    | W              |
| 0xA3 (1 | 163) Digital Tile Coor  | dinate 5 - Y-direction                                                                     |                         |          |                          |                |
| 8:0     | Y <sub>4/5</sub>        | The starting y-coordinate of digital tiles *_Y4.                                           | 180<br>(384)            | Ν        | 0–480                    | W              |
| 0xA4 (1 | 64) Digital Tile Coor   | dinate 6 - Y-direction                                                                     |                         |          |                          |                |
| 8:0     | Y <sub>5/5</sub>        | The ending y-coordinate of digital tiles *_Y4.                                             | 1E0<br>(480)            | Ν        | 0–480                    | W              |
| 0xA5 (1 | 65) AEC/AGC Desire      | d Bin                                                                                      |                         |          |                          |                |
| 5:0     | Desired Bin             | User-defined "desired bin" that gives a measure of how bright the image is intended.       | 3A<br>(58)              | Y        | 1–64                     | W              |
| 0xA6 (1 | 66) AEC Update Free     | quency                                                                                     |                         |          |                          |                |
| 3:0     | Exp Skip Frame          | The number of frames that the AEC must skip before updating the exposure register (R0xBB). | 2                       | Y        | 0–15                     | W              |



| Bit     | Bit Name                       | Bit Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Default in<br>Hex (Dec) | Shadowed | Legal<br>Values<br>(Dec) | Read/<br>Write |  |  |  |
|---------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|--------------------------|----------------|--|--|--|
| 0xA8 (1 | 0xA8 (168) AEC Low Pass Filter |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |          |                          |                |  |  |  |
| 1:0     | Exp LPF                        | This value plays in role in determining the increment/<br>decrement size of exposure value from frame to frame.<br>If current bin ≠ 0 (R0xBC),<br>When Exp LPF = 0:<br>Actual new exposure = Calculated new exposure.<br>When Exp LPF = 1:<br>if  (Calculated. new exp - current exp)   > (current exp<br>/4),<br>Actual new exposure = Calculated new exposure,<br>otherwise<br>Actual new exposure = Calculated new exposure,<br>otherwise<br>Actual new exposure = Current exp +/- (calc new<br>exp/2)<br>When Exp LPF = 2:<br>if  (Calculated new exp - current exp)   > (current exp<br>/4),                                                                                                                                                                                                                                                                                                                | 0                       | Y        | 0–2                      | W              |  |  |  |
|         |                                | Actual new exposure = Calc. new exposure,<br>otherwise<br>Actual new exposure = Current exp +/- (calc new<br>exp/4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |          |                          |                |  |  |  |
| 0xA9 (1 | 69) AGC Output Up              | date Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |          |                          |                |  |  |  |
| 3:0     | Gain Skip Frame                | The number of frames that the AGC must skip before updating the gain register (R0xBA).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                       | Y        | 0–15                     | W              |  |  |  |
| 0xAA (1 | 170) AGC Low Pass Fi           | lter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |          |                          |                |  |  |  |
| 1:0     | Gain LPF                       | This value plays a role in determining the increment/<br>decrement size of gain value from frame to frame.<br>If current bin (R0xBC) $\neq$ 0<br>When Gain LPF = 0:<br>Actual new gain = Calculated new gain<br>When Exp LPF = 1:<br>if  (Calculated new gain - current gain)   > (current gain/<br>4),<br>Actual new gain = Calculated new gain, otherwise<br>Actual new gain = Current gain ± (calculated new gain/<br>2)<br>When Exp LPF = 2:<br>if  (Calculated new gain - current gain)   > (current gain /<br>4),<br>Actual new gain = Calculated new gain, otherwise<br>Actual new gain = Current gain ± (calculated new gain/<br>4),<br>Actual new gain = Calculated new gain, otherwise<br>Actual new gain = Calculated new gain, otherwise | 2                       | Y        | 0–2                      | W              |  |  |  |



| Bit                            | Bit Name                                 | Bit Description                                                                                                                                                                                                                                                                                                                        | Default in<br>Hex (Dec) | Shadowed | Legal<br>Values<br>(Dec) | Read/<br>Write |  |  |
|--------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|--------------------------|----------------|--|--|
| 0xAB (171) Maximum Analog Gain |                                          |                                                                                                                                                                                                                                                                                                                                        |                         |          |                          |                |  |  |
| 6:0                            | Maximum Analog<br>Gain                   | This register is used by the automatic gain control (AGC)<br>as the upper threshold of gain. This ensures the new<br>calibrated gain value will not exceed that which<br>MT9V034 supports.<br>Range: 16 dec -64dec for 1X-4X respectively<br>Note: No exception detection is installed, user needs to<br>be cautious when programming. | 40<br>(64)              | Ν        | 16–64                    | W              |  |  |
| 0xAC (1                        | 72) Minimum Coars                        | e Shutter Width                                                                                                                                                                                                                                                                                                                        |                         |          | -                        |                |  |  |
| 15:0                           | Minimum Coarse<br>Shutter Width<br>Total | This register is used by the automatic exposure control<br>(AEC) as the lower threshold of exposure. This ensures<br>the new calibrated integration value will not exceed<br>that which MT9V034 supports.                                                                                                                              | 1                       | Ν        | 1–32765                  | W              |  |  |
| 0xAD (1                        | 173) Maximum Coar                        | se Shutter Width                                                                                                                                                                                                                                                                                                                       |                         |          |                          |                |  |  |
| 15:0                           | Maximum Coarse<br>Shutter Width<br>Total | This register is used by the automatic exposure control (AEC) as the upper threshold of exposure. This ensures the new calibrated integration value will not exceed that which MT9V034 supports.                                                                                                                                       | 01E0<br>(480)           | N        | 1–32765                  | W              |  |  |
| 0xAE (1                        | 74) AGC/AEC Bin Dif                      | ference Threshold                                                                                                                                                                                                                                                                                                                      |                         |          |                          |                |  |  |
| 7:0                            | Bin Difference<br>Threshold              | This register is used by the AEC if exposure reaches the<br>Minimum Coarse Shutter Width value (R0xAC). Then if<br>the difference between desired bin (R0xA5) and current<br>bin (R0xBC) is larger than the threshold, the exposure<br>will be increased.                                                                              | 14<br>(20)              | Y        | 0–63                     | W              |  |  |
| 0xAF (1                        | 75) AGC/AEC Enable                       |                                                                                                                                                                                                                                                                                                                                        |                         |          |                          |                |  |  |
| 0                              | AEC Enable<br>Context A                  | 0 = Disables Automatic Exposure Control.<br>1 = Enables Automatic Exposure Control.                                                                                                                                                                                                                                                    | 1                       | Y        | 0, 1                     | W              |  |  |
| 1                              | AGC Enable<br>Context A                  | 0 = Disables Automatic Gain Control.<br>1 = Enables Automatic Gain Control.                                                                                                                                                                                                                                                            | 1                       | Y        | 0, 1                     | W              |  |  |
| 8                              | AEC Enable<br>Context B                  | 0 = Disables Automatic Exposure Control.<br>1 = Enables Automatic Exposure Control.                                                                                                                                                                                                                                                    | 0                       | Y        | 0, 1                     | W              |  |  |
| 9                              | AGC Enable<br>Contest B                  | 0 = Disables Automatic Gain Control.<br>1 = Enables Control.                                                                                                                                                                                                                                                                           | 0                       | Y        | 0, 1                     | W              |  |  |
| 0xB0 (1                        | 76) AGC/AEC Pixel C                      | ount                                                                                                                                                                                                                                                                                                                                   |                         |          |                          |                |  |  |
| 15-0                           | Pixel Count                              | The number of pixel used for the AEC/AGC histogram.                                                                                                                                                                                                                                                                                    | ABE0<br>(44,000)        | Y        | 0–65535                  | W              |  |  |
| 0xB1 (1                        | 77) LVDS Master Co                       | ntrol                                                                                                                                                                                                                                                                                                                                  |                         |          |                          |                |  |  |
| 0                              | PLL Bypass                               | 0 = Internal shift-CLK is driven by PLL.<br>1 = Internal shift-CLK is sourced from the<br>LVDS_BYPASS_CLK.                                                                                                                                                                                                                             | 0                       | Y        | 0, 1                     | W              |  |  |
| 1                              | LVDS Power-down                          | 0 = Normal operation.<br>1 = Powers down LVDS block.                                                                                                                                                                                                                                                                                   | 1                       | Y        | 0, 1                     | W              |  |  |
| 2                              | PLL Test Mode                            | 0 = Normal operation.<br>1 = The PLL output frequency is equal to the system<br>clock frequency (26.6 MHz).                                                                                                                                                                                                                            | 0                       | Y        | 0, 1                     | W              |  |  |
| 3                              | LVDS Test Mode                           | 0 = Normal operation.<br>1 = The SER_DATAOUT_P drives a square wave in both<br>stereo and stand-alone modes). In stereo mode, ensure<br>that SER_DATAIN_P is logic "0."                                                                                                                                                                | 0                       | Y        | 0, 1                     | W              |  |  |



| Bit     | Bit Name                          | Bit Description                                                                                                                                                                                                                                                                                                                                                       | Default in<br>Hex (Dec) | Shadowed | Legal<br>Values<br>(Dec) | Read/<br>Write |  |  |
|---------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|--------------------------|----------------|--|--|
| 0xB2 (1 | 78) LVDS Shift Clock              | Control                                                                                                                                                                                                                                                                                                                                                               |                         |          |                          |                |  |  |
| 2:0     | Shift-clk Delay<br>Element Select | The amount of shift-CLK delay that minimizes inter-<br>sensor skew.                                                                                                                                                                                                                                                                                                   | 0                       | Y        | 0–7                      | W              |  |  |
| 4       | LVDS Clock<br>Output Enable       | When this bit is set, the LVDS Clock (SHFT_CLKOUT) pins are disabled. Has no effect on SER_DATAOUT pins.                                                                                                                                                                                                                                                              | 1                       | Y        | 0, 1                     | W              |  |  |
| 0xB3 (1 | 0xB3 (179) LVDS Data Control      |                                                                                                                                                                                                                                                                                                                                                                       |                         |          |                          |                |  |  |
| 2:0     | Data Delay<br>Element Select      | The amount of data delay that minimizes inter-sensor skew.                                                                                                                                                                                                                                                                                                            | 0                       | Y        | 0–7                      | W              |  |  |
| 4       | LVDS Data Input<br>Enable         | When this bit is set, the LVDS Data Receiver<br>(SER_DATAIN pins) is disabled. If this bit is changed, it is<br>mandatory that a soft reset (R0x0C) is then issued for<br>proper operation.                                                                                                                                                                           | 1                       | Y        | 0, 1                     | W              |  |  |
| 0xB4 (1 | .80) LVDS Latency                 |                                                                                                                                                                                                                                                                                                                                                                       |                         |          |                          | -              |  |  |
| 1:0     | Stream Latency<br>Select          | The amount of delay so that the two streams are in sync.                                                                                                                                                                                                                                                                                                              | 0                       | Y        | 0–3                      | W              |  |  |
| 0xB5 (1 | .81) LVDS Internal Sy             | inc                                                                                                                                                                                                                                                                                                                                                                   |                         |          |                          |                |  |  |
| 0       | LVDS Internal<br>Sync Enable      | When this bit is set, the MT9V034 generates sync<br>pattern (data with all zeros except start bit) on<br>LVDS_SER_DATA_OUT.                                                                                                                                                                                                                                           | 0                       | Y        | 0, 1                     | W              |  |  |
| 0xB6 (1 | 82) LVDS Payload Co               | ontrol                                                                                                                                                                                                                                                                                                                                                                |                         |          |                          |                |  |  |
| 0       | Use 10-bit Pixel<br>Enable        | When this bit is set, all 10 bits will contain pixel (with<br>embedded controls) in standalone mode. If clear,<br>payload will be 8 bits of pixel with 2 bits of controls.                                                                                                                                                                                            | 0                       | Y        | 0, 1                     | W              |  |  |
| 0xB7 (1 | 83) Stereoscopy Erro              | or Control                                                                                                                                                                                                                                                                                                                                                            |                         |          |                          |                |  |  |
| 0       | Enable Stereo<br>Error Detect     | Set this bit to enable stereo error detect mechanism.                                                                                                                                                                                                                                                                                                                 | 0                       | Y        | 0, 1                     | W              |  |  |
| 1       | Enable Stick<br>Stereo Error Flag | When this bit is set, the stereo error flag remains<br>asserted once an error is detected unless clear stereo<br>error flag (bit 2) is set.                                                                                                                                                                                                                           | 0                       | Y        | 0, 1                     | W              |  |  |
| 2       | Clear Stereo Error<br>Flag        | Set this bit to clear the stereoscopy error flag (R0xB8 returns to logic 0).                                                                                                                                                                                                                                                                                          | 0                       | Y        | 0, 1                     | W              |  |  |
| 0xB8 (1 | 84) Stereoscopy Erro              | br Flag                                                                                                                                                                                                                                                                                                                                                               |                         |          |                          |                |  |  |
| 0       | Stereoscopy Error<br>Flag         | Stereoscopy error status flag. It is also directly connected to the ERROR output pin.                                                                                                                                                                                                                                                                                 |                         |          |                          | R              |  |  |
| 0xB9 (1 | 85) LVDS Data Outp                | ut                                                                                                                                                                                                                                                                                                                                                                    |                         |          |                          |                |  |  |
| 15:0    | Combo Reg                         | This 16-bit value contains both 8-bit pixel values from<br>both stereoscopic master and slave sensors. It can be<br>used in diagnosis to determine how well in sync the two<br>sensors are. Captures the state when master sensor has<br>issued a reserved byte and slave has not.<br>Note: This register should be read from the stereoscopic<br>master sensor only. |                         |          |                          | R              |  |  |
| 0xBA (1 | 0xBA (186) AGC Gain Output        |                                                                                                                                                                                                                                                                                                                                                                       |                         |          |                          |                |  |  |
| 6:0     | AGC Gain                          | Status register to report the current gain value obtained from the AGC algorithm.                                                                                                                                                                                                                                                                                     | 10                      |          |                          | R              |  |  |
| 0xBB (1 | 87) AEC Exposure O                | utput                                                                                                                                                                                                                                                                                                                                                                 |                         |          |                          | <u>.</u>       |  |  |
| 15:0    | AEC Exposure                      | Status register to report the current exposure value obtained from the AEC algorithm.                                                                                                                                                                                                                                                                                 | 00C8<br>(200)           |          |                          | R              |  |  |



| Bit                            | Bit Name                        | Bit Description                                                                                                                                                                                                                                                | Default in<br>Hex (Dec) | Shadowed | Legal<br>Values<br>(Dec) | Read/<br>Write |  |  |
|--------------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|--------------------------|----------------|--|--|
| 0xBC (188) AGC/AEC Current Bin |                                 |                                                                                                                                                                                                                                                                |                         |          |                          |                |  |  |
| 5:0                            | Current Bin                     | Status register to report the current bin of the histogram.                                                                                                                                                                                                    |                         |          |                          | R              |  |  |
| 0xBF (1                        | DxBF (191) Field Vertical Blank |                                                                                                                                                                                                                                                                |                         |          |                          |                |  |  |
| 8:0                            | Field Vertical<br>Blank         | The number of blank rows between odd and even fields.<br>Note: For interlace (both field) mode (R0x07 bits1:0)<br>only.                                                                                                                                        | 016<br>(22)             | Y        | 1–255                    | W              |  |  |
|                                |                                 | time between odd and even fields is one master clock<br>cycle.                                                                                                                                                                                                 |                         |          |                          |                |  |  |
| 0xC0 (1                        | 92) Monitor Mode C              | apture Control                                                                                                                                                                                                                                                 |                         |          |                          |                |  |  |
| 7:0                            | Image Capture<br>Numb           | The number of frames to be captured during the wake-<br>up period when monitor mode is enabled.                                                                                                                                                                | 0A<br>(10)              | Y        | 1–255                    | W              |  |  |
| 0xC2 (1                        | 94) Analog Controls             |                                                                                                                                                                                                                                                                |                         |          |                          |                |  |  |
| 6                              | Reserved                        | Reserved. Leave at "1"                                                                                                                                                                                                                                         | 1                       | N        | 0, 1                     | W              |  |  |
| 7                              | Anti-Eclipse<br>Enable          | Setting this bit turns on anti-eclipse circuitry.                                                                                                                                                                                                              | 0                       | Ν        | 0, 1                     | W              |  |  |
| 13:11                          | V_rst_lim voltage<br>Level      | V_rst_lim = bits [13:11] * 50mV + 1.90V<br>Range: 1.90–2.25; Default: 1.95 V<br>Usage:<br>For anti-eclipse reference voltage control                                                                                                                           | 1                       | Ν        | 0–7                      | W              |  |  |
| 0xC6 (1                        | 98) NTSC Frame Val              | id Control                                                                                                                                                                                                                                                     |                         |          |                          |                |  |  |
| 0                              | Extend Frame<br>Valid           | When this bit is set, frame valid is extended for half-line in length at the odd field.                                                                                                                                                                        | 0                       | Y        | 0, 1                     | W              |  |  |
| 1                              | Replace FV/LV<br>with Ped/Snyc  | When this bit is set, frame valid and line valid is replaced by ped and sync signals respectively.                                                                                                                                                             | 0                       | Y        | 0, 1                     | W              |  |  |
| 0xC7 (1                        | .98) NTSC Horizontal            | l Blank Control                                                                                                                                                                                                                                                |                         |          |                          |                |  |  |
| 7:0                            | Front porch width               | The front porch width in number of master clock cycles.<br>NTSC standard is 1.5?sec ±0.1?sec                                                                                                                                                                   | 16<br>(22)              | Ν        | 0–255                    | W              |  |  |
| 15:8                           | Sync Width                      | The sync pulse width in number of master clock cycle.<br>NTSC standard is 4.7?sec ±0.1?sec.                                                                                                                                                                    | 44<br>(68)              | Ν        | 0–255                    | W              |  |  |
| 0xC8 (2                        | 00) NTSC Vertical Bl            | ank Control                                                                                                                                                                                                                                                    |                         |          | -                        | _              |  |  |
| 7:0                            | Equalizing Pulse<br>Width       | The pulse width in number of master clock cycles. NTSC standard is 2.3?sec ±0.1?sec.                                                                                                                                                                           | 21<br>(33)              | Ν        | 0–255                    | W              |  |  |
| 15:8                           | Vertical Serration<br>Width     | The pulse width in number of master clock cycles. NTSC standard is 4.7?sec ±0.1?sec.                                                                                                                                                                           | 44<br>(68)              | Ν        | 0–255                    | W              |  |  |
| 0xC9 (2                        | 01) Column Start Co             | ntext B                                                                                                                                                                                                                                                        |                         |          |                          |                |  |  |
| 9:0                            | Column Start                    | The first column to be read out (not counting dark<br>columns that may be read). To window the image<br>down, set this register to the starting X value.                                                                                                       | 000<br>(1)              | Ν        | 0–752                    | W              |  |  |
| 0xCA (2                        | 202) Row Start Conte            | ext B                                                                                                                                                                                                                                                          |                         |          |                          | 1              |  |  |
| 8:0                            | Row Start                       | The first row to be read out (not counting any dark rows<br>that may be read). To window the image down, set this<br>register to the starting Y value. Setting a value less than<br>four is not recommended since the dark rows should be<br>read using R0x0D. | 004<br>(4)              | Ν        | 4–2482                   | W              |  |  |



| Bit     | Bit Name                  | Bit Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Default in<br>Hex (Dec) | Shadowed | Legal<br>Values<br>(Dec) | Read/<br>Write |
|---------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|--------------------------|----------------|
| 0xCB (2 | 03) Window Height         | Context B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |          |                          | 1              |
| 8:0     | Window Height             | Number of rows in the image to be read out (not counting any dark rows or border rows that may be read).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1E0<br>(480)            | N        | 1–480                    | W              |
| 0xCC (2 | 04) Window Width          | Context B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |          |                          |                |
| 9:0     | Window Width              | Number of columns in image to be read out (not counting any dark columns or border columns that may be read).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2F0<br>(752)            | Ν        | 1–752                    | W              |
| 0xCD(2  | 05) Horizontal Blank      | king Context B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |          |                          |                |
| 9:0     | Horizontal<br>Blanking    | Number of blank columns in a row.<br>Minimum horizontal blanking is 61 for normal mode, 71<br>for column bin 2 mode, and 91 for column bin 4 mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 05E<br>(94)             | Ν        | 61–71023                 | W              |
| 0xCE(2  | 06) Vertical Blanking     | g Context B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |          |                          |                |
| 14:0    | Vertical Blanking         | Number of blank rows in a frame. V-Blank value must<br>meet the following minimums:<br>Linear Mode:<br>V-Blank (min) = (SW_total - SW1 + 7)<br>= SW_total - R0x08 + 7<br>If manual exposure, then SW_total = R0xD2.<br>If auto-exposure mode then SW_total = R0xAD.<br>High Dynamic Range Mode:<br>If Auto-Knee Point disabled, then above equations<br>apply. If Auto-Knee Point enabled, then<br>V-Blank (min) = (t2 + t3 + 7).<br>Note: Calculate t2 and t3 taking into account Auto<br>Exposure setting.<br>Note: When Sequential Mode is enabled, this register is<br>ineffective. Vertical blank = exposure + 6 rows. | 002D<br>(45)            | Ν        | 2–32288                  | W              |
| 0xCF(2  | 07) Coarse Shutter V      | Vidth 1 Context B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |          |                          |                |
| 14:0    | Coarse Shutter<br>Width 1 | The row number in which the first knee occurs. This<br>may be used when high dynamic range is enabled<br>(R0x0F[8] = 1) is enabled & exposure knee point auto<br>adjust is disabled (R0xD1[8] = 0). This register is not<br>shadowed, but any change made does not take effect<br>until the following new frame.<br>This register minimum value is 2, for either linear or<br>HDR modes.<br>Note:<br>t1 = Shutter width 1;<br>t2 = Shutter width 2 - Shutter width 1;<br>t3 = total integration - Shutter width 2                                                                                                           | 1DE<br>(478)            | Ν        | 0–32765                  | W              |



| Bit                                             | Bit Name                                     | Bit Description                                                                                                                                                                                                                                                                                                                                                                                                                                               | Default in<br>Hex (Dec) | Shadowed | Legal<br>Values<br>(Dec) | Read/<br>Write |
|-------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|--------------------------|----------------|
| 0xD0(2                                          | 08) Coarse Shutter V                         | Vidth 2 Context B                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |          |                          |                |
| 14:0                                            | Coarse Shutter<br>Width 2                    | The row number in which the second knee occurs. This<br>may be used only when high dynamic range is enabled<br>& exposure knee point auto adjust control bit is<br>disabled. This register is not shadowed, but any change<br>made does not take effect until the following new<br>frame.<br>Note:<br>t1 = Shutter width 1;<br>t2 = Shutter width 2 - Shutter width 1;<br>t3 = total integration - Shutter width 2                                            | 1DE<br>(479)            | Ν        | 0–32765                  | W              |
| 0xD1(2                                          | 09) Shutter Width C                          | ontrol Context B                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |          |                          |                |
| 3:0                                             | T2 Ratio                                     | One-half to the power of this value indicates the ratio of<br>duration time t2, when saturation control gate is<br>adjusted to level V2, to total coarse integration when<br>exposure knee point auto adjust control bit is enabled.<br>This register is not shadowed, but any change made<br>does not take effect until the following new frame.<br>T2 = total coarse integration * (½) <sup>t2</sup> _ratio                                                 | 4                       | Ν        | 0–15                     | W              |
| 7:4                                             | T3 Ratio                                     | One-half to the power of this value indicates the ratio of<br>duration time t3, when saturation control gate is<br>adjusted to level V3, to total coarse integration when<br>exposure knee point auto adjust control bit is enabled.<br>This register is not shadowed, but any change made<br>does not take effect until the following new frame.<br>T3 = total coarse integration * (½) <sup>t3_ratio</sup><br>Note: t1 = total coarse integration - t2 - t3 | 6                       | Ν        | 0–15                     | w              |
| 8                                               | Exposure Knee<br>Point Auto Adjust<br>Enable | 0 = Auto adjust disabled.<br>1 = Auto adjust enabled.                                                                                                                                                                                                                                                                                                                                                                                                         | 1                       | Ν        | 0,1                      | W              |
| 9                                               | Single Knee<br>Enable                        | 1 = Single knee enabled.                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                       | N        | 0,1                      | W              |
| 0xD2 (210) Coarse Shutter Width Total Context B |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |          |                          |                |
| 14:0                                            | Coarse Shutter<br>Width Total                | Total integration time in number of rows. This value is<br>used only when AEC is disabled only (bit 0 of Register<br>175). This register is not shadowed, but any change<br>made does not take effect until the following new<br>frame.                                                                                                                                                                                                                       | 1E0<br>(480)            | N        | 0–32765                  | W              |



| Bit                                           | Bit Name                                  | Bit Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Default in<br>Hex (Dec) | Shadowed | Legal<br>Values<br>(Dec) | Read/<br>Write |  |
|-----------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|--------------------------|----------------|--|
| 0xD3 (2                                       | 211) Fine Shutter Wid                     | dth 1 Context A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |                          |                |  |
| 10:0                                          | Fine Shutter<br>Width 1                   | This register, combined with Coarse Shutter Width 1,<br>defines the time when the first knee occurs. This may be<br>used only when high dynamic range is enabled and the<br>exposure knee point auto-adjust control bit is disabled.<br>This register is not shadowed, but any change made<br>does not take effect until the following new frame.<br>Register units are master clock cycles.<br>Operational maximum is (row time - 1)<br>= (Window Width + HBLANK - 1)<br>Total maximum is HBLANK (R0x05) + 751<br>= 1023 + 751 = 1774<br>Notes:<br>t1 = Shutter width 1<br>t2 = Shutter width 2 - Shutter width 1<br>t3 = Total integration - Shutter width 2 | 0<br>(0)                | Ν        | 0–1774                   | W              |  |
| 0xD4 (2                                       | 0xD4 (212) Fine Shutter Width 2 Context A |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |                          |                |  |
| 10:0                                          | Fine Shutter<br>Width 2                   | This register, combined with Coarse Shutter Width 2,<br>defines the time when the second knee occurs. This may<br>be used only when high dynamic range is enabled and<br>the exposure knee point auto-adjust control bit is<br>disabled. This register is not shadowed, but any change<br>made does not take effect until the following new<br>frame. Register units are master clock cycles.<br>Maximum is HBLANK (R0x05) + 751<br>= 1023 + 751 = 1774<br>Notes:<br>t1 = Shutter width 1<br>t2 = Shutter width 2 - Shutter width 1<br>t3 = Total integration - Shutter width 2                                                                                | 0<br>(0)                | Ν        | 0–1774                   | W              |  |
| 0xD5 (213) Fine Shutter Width Total Context A |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |                          |                |  |
| 10:0                                          | Fine Shutter<br>Width Total               | This register, combined with Coarse Shutter<br>Width Total, defines the total integration time.<br>This register is not shadowed, but any change<br>made does not take effect until the following new<br>frame. Register units are master clock cycles.<br>Maximum is HBLANK (R0x05) + 751<br>= 1023 + 751 = 1774<br>Note:<br>When Coarse Shutter Width Total is zero, Minimum<br>Fine Shutter Width = 260                                                                                                                                                                                                                                                     | 0<br>(0)                | Ν        | 0–1774                   | W              |  |



| Bit                     | Bit Name                                      | Bit Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Default in<br>Hex (Dec) | Shadowed | Legal<br>Values<br>(Dec) | Read/<br>Write |
|-------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|--------------------------|----------------|
| 0xD6 (2                 | 214) Fine Shutter Wid                         | dth 1 Context B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |          |                          |                |
| 10:0                    | Fine Shutter<br>Width 1                       | This register, combined with Coarse Shutter Width 1,<br>defines the time when the first knee occurs. This may be<br>used only when high dynamic range is enabled and the<br>exposure knee point auto adjust control bit is disabled.<br>This register is not shadowed, but any change made<br>does not take effect until the following new frame.<br>Register units are master clock cycles.<br>Maximum is HBLANK (R0x05) + 751<br>= 1023 + 751 = 1774<br>Notes:<br>t1 = Shutter width 1<br>t2 = Shutter width 2 - Shutter width 1<br>t3 = Total integration - Shutter width 2  | 0<br>(0)                | Ν        | 0–1774                   | w              |
| 0xD7 (2                 | 215) Fine Shutter Wid                         | Jth 2 Context B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |          |                          |                |
| 10:0                    | Fine Shutter<br>Width 2                       | This register, combined with Coarse Shutter Width 2,<br>defines the time when the second knee occurs. This may<br>be used only when high dynamic range is enabled and<br>the exposure knee point auto adjust control bit is<br>disabled. This register is not shadowed, but any change<br>made does not take effect until the following new<br>frame. Register units are master clock cycles.<br>Maximum is HBLANK (R0x05) + 751<br>= 1023 + 751 = 1774<br>Notes:<br>t1 = Shutter width 1<br>t2 = Shutter width 2 - Shutter width 1<br>t3 = Total integration - Shutter width 2 | 0<br>(0)                | Ν        | 0–1774                   | W              |
| 0xD8 (2                 | 0xD8 (216) Fine Shutter Width Total Context B |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |          |                          |                |
| 10:0                    | Width Total                                   | Total, defines the total integration time. This register is<br>not shadowed, but any change made does not take<br>effect until the following new frame. Register units are<br>in master clock cycles.<br>Maximum is HBLANK (R0x05) + 751<br>= 1023 + 751 = 1774<br>Note:<br>When Coarse Shutter Width Total is zero,<br>Minimum Fine Shutter Width = 260                                                                                                                                                                                                                        | 0<br>(0)                | Ν        | 0-1//4                   | w              |
| 0xD9 (217) Monitor Mode |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |          |                          |                |
| 10:0                    | Monitor Mode<br>Enable                        | Setting this bit puts the sensor into a cycle of sleeping<br>for approximately five minutes, and waking up to<br>capture a programmable number of frames (Register<br>0XC0). Clearing this bit will resume normal operation.                                                                                                                                                                                                                                                                                                                                                    | 0<br>(0)                | Y        | 0-1                      | W              |



| Bit                         | Bit Name                 | Bit Description                                                                                                                                                                        | Default in<br>Hex (Dec) | Shadowed | Legal<br>Values<br>(Dec)                          | Read/<br>Write |
|-----------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|---------------------------------------------------|----------------|
| 0xF0 (240) Bytewise Address |                          |                                                                                                                                                                                        |                         |          |                                                   |                |
|                             | Bytewise Address         | Special address to perform 8-bit reads and writes to the sensor. See Two-Wire Interface description for further details on how to use this functionality.                              |                         |          |                                                   |                |
| 0xFE (2                     | 0xFE (254) Register Lock |                                                                                                                                                                                        |                         |          |                                                   |                |
| 15:0                        | Register Lock Code       | To lock all registers except R0xFE, program data with<br>0xDEAD; to unlock access to all registers, program data<br>with 0xBEEF.<br>To lock Registers 0x0D and 0x0E only, program data | BEEF<br>(48,879)        | N        | 48879<br>(0xBEEF),<br>57005<br>(0xDEAD),<br>57007 | W              |
|                             |                          | with 0xDEAF; to unlock, program data with 0xBEEF.<br>While R0x0D and R0x0E are locked, any subsequent<br>writes to those registers will be ignored until registers<br>are unlocked.    |                         |          | (0xDEAF)                                          |                |



## **Revision History**

| Rev. A | <br> |
|--------|------|
|        |      |

Initial release

10 Eunos Road 8 13-40, Singapore Post Center, Singapore 408600 prodmktg@aptina.com www.aptina.com Aptina, Aptina Imaging, and the Aptina logo are the property of Aptina Imaging Corporation

All other trademarks are the property of their respective owners. This data sheet contains minimum and maximum limits specified over the power supply and temperature range set forth herein. Although considered final, these specifications are subject to change, as further product development and data characterization sometimes occur.