

Technical Note

MT9V032 Stand-Alone Serial Operation

Introduction

The LVDS (low voltage differential signaling) interface of the MT9V032 allows for the streaming of sensor data serially to a standard off-the-shelf deserializer. The pixels (and controls) are packeted—12-bit packets for stand-alone mode and 18-bit packets for stereoscopy mode. All serial signaling (clock and data) is LVDS. The LVDS serial output could either be data from a single sensor (stand-alone) or stream-merged data from two sensors (self and its stereoscopic slave pair). This technical note describes in detail the topology for the stand-alone serial operation.

LVDS Serial (Stand-Alone) Output

Based on the value of R0xB6 bit 0 (10-bit pixel enable), the deserializer attached to a stand-alone sensor will be able to reproduce one of the two parallel outputs:

- Standard PIXEL_DATA[9:2], LINE_VALID, FRAME_VALID, and PIXCLK
- PIXEL_DATA[9:0] containing embedded codes for LINE_VALID and FRAME_VALID, which can be retrieved with a small piece of logic

LVDS Output Format

In stand-alone mode, the packet size is 12 bits (2 frame bits and 10 payload bits). The user can select 10-bit pixels or 8-bit pixels. In 8-bit pixel mode, the packet consists of a start bit, 8-bit pixel data, the LINE_VALID bit, the FRAME_VALID bit, and the end bit. For 10-bit pixel mode, the packet consists of a start bit, 10-bit pixel data, and the end bit.

1

Table 1: LVDS Packet Format in Stand-Alone Mode (Stereoscopy Mode Bit De-Asserted)

12-Bit Packet	Use_10-Bit_pixels Bit De-Asserted (8-Bit mode)	Use_10-Bit_pixels Bit Asserted (10-Bit mode)
Packet[0]	HIGH (Start bit)	HIGH (Start bit)
Packet[1]	PixelData[2]	PixelData[0]
Packet[2]	PixelData[3]	PixelData[1]
Packet[3]	PixelData[4]	PixelData[2]
Packet[4]	PixelData[5]	PixelData[3]
Packet[5]	PixelData[6]	PixelData[4]
Packet[6]	PixelData[7]	PixelData[5]
Packet[7]	PixelData[8]	PixelData[6]
Packet[8]	PixelData[9]	PixelData[7]
Packet[9]	LINE_VALID	PixelData[8]
Packet[10]	FRAME_VALID	PixelData[9]
Packet[11]	LOW (Stop bit)	LOW (Stop bit)

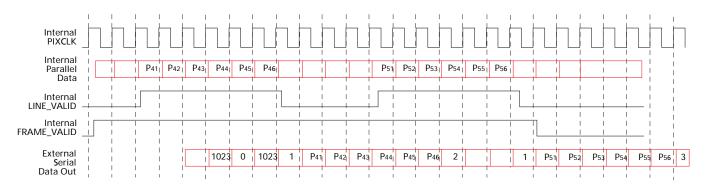

Control signals LINE_VALID and FRAME_VALID can be reconstructed from their respective preceding and succeeding flags that are always embedded within the pixel data in the form of reserved words, shown in Table 2.

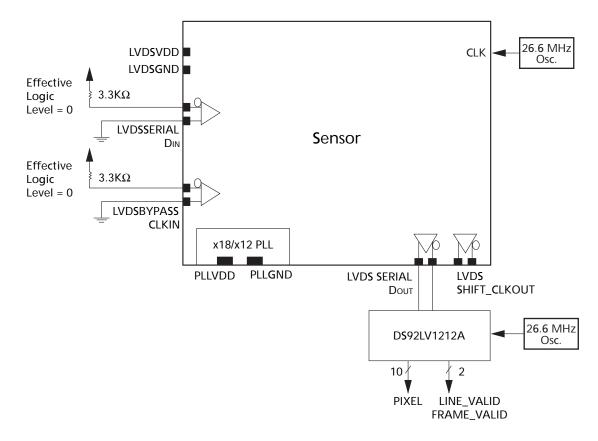
Table 2: Reserved Words in the Pixel Data Stream

Pixel Data Reserved Word	Flag
0	Precedes FRAME_VALID assertion
1	Precedes LINE_VALID assertion
2	Succeeds LINE_VALID de-assertion
3	Succeeds FRAME_VALID de-assertion

If the sensor provides a pixel whose value is 0, 1, 2, or 3 (that is, the same as a reserved word), then the outgoing serial pixel value is switched to "4."

Figure 1: Stand-Alone Serial Output Format for a 6 x 2 Frame Showing Location of Embedded Codes

- Notes: 1. External pixel values of 0, 1, 2, 3 are reserved (they only convey control information). Any raw pixel of value 0, 1, 2, or 3 will be substituted with 4.
 - 2. External pixel sequence 1023, 0, 1023 is a reserved sequence (conveys control information). Any raw pixel sequence of 1023, 0, 1023 will be substituted with the sequence 1023, 4, 1023.


Topology

With the LVDS serial video output, the user can reconstruct the parallel stream using a deserializer as far away as 8 meters (approximately 25 feet) from the sensor. This serial link saves cabling cost of 14 wires (PIXEL_DATA[9:0], LINE_VALID, FRAME_VALID, PIXCLK, GND). Instead, three wires (two differential LVDS, one GND) are sufficient to carry the video signal.

In this configuration, the internal PLL generates the SHIFT_CLK (x12). LVDS signals SER_DATA_OUT and SER_DATA_OUT_ need be connected to a deserializer (that clocks at approximately the same system clock frequency as the sensor).

Figure 2 shows how an off-the-shelf deserializer can be used to retrieve the standard parallel signals of PIXEL_DATA[9:0], LINE_VALID, and FRAME_VALID.

Figure 2: Stand-Alone Topology

Configuration

Below is the typical configuration of the sensor:

- 1. Power up sensor
- 2. Enable LVDS driver (set R0xB3[4]= 0)
- 3. De-assert LVDS power-down (set R0xB1[1] = 0)
- 4. Issue a soft RESET (R0x0C[0] = 1 followed by R0x0C[0] = 0)

If needed to synchronize the system, perform the following steps:

- 5. Force sync patterns for the deserializer to lock (set R0xB5[0] = 1)
- 6. Stop applying sync patterns (set R0xB5[0] = 0)

Conclusion

In addition to its standard parallel output, the MT9V032 can provide a serial video stream output at the full rate of 60 fps, a full resolution of 752 x 480, and a full-pixel depth of 10 bits per pixel. This serial stream can be converted to a parallel data stream by an off-the-shelf deserializer up to 8 meters (approximately 25 feet) away.

For further information and assistance on this feature, contact Micron Imaging applications at www.micron.com/imaging.

8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900 prodmktg@micron.com www.micron.com Customer Comment Line: 800-932-4992 Micron, the M logo, and the Micron logo are trademarks of Micron Technology, Inc. All other trademarks are the property of their respective owners.

Revision History

Rev. A	15/2006
--------	---------

• Initial release.